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ABSTRACT 

An efficient implementation of the high-order spectral volume (SV) method is 

presented for multi-dimensional conservation laws on unstructured grids.  In the SV method, 

each simplex cell is called a spectral volume (SV), and the SV is further subdivided into 

polygonal (2D), or polyhedral (3D) control volumes (CVs) to support high-order data 

reconstructions. In the traditional implementation, Gauss quadrature formulas are used to 

approximate the flux integrals on all faces. In the new approach, a nodal set is selected and 

used to reconstruct a high-order polynomial approximation for the flux vector, and then the 

flux integrals on the internal faces are computed analytically, without the need for Gauss 

quadrature formulas. This gives a significant advantage over the traditional SV method in 

efficiency and ease of implementation. Fundamental properties of the new SV 

implementation are studied and high-order accuracy is demonstrated for linear and nonlinear 

advection equations, and the Euler equations.   

The new quadrature-free approach is then extended to handle local adaptive hp-

refinement (grid and order refinement). Efficient edge-based adaptation utilizing a binary tree 

search algorithm is employed. Several different adaptation criteria which focus 

computational effort near high gradient regions are presented. Both h- and p- refinements are 

presented in a general framework where it is possible to perform either or both on any grid 

cell at any time. Several well-known inviscid flow test cases, subjected to various levels of 

adaptation, are utilized to demonstrate the effectiveness of the method. 

An analysis of the accuracy and stability properties of the spectral volume (SV) 

method is then presented. In general, the partitioning of an SV into CVs is not uniquely 
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defined. It is of great importance to select a partition which yields favorable stability 

properties, and results in an interpolation polynomial of high quality. The current work seeks 

to address the issue of stability, as well as polynomial quality, in the design of SV partitions. 

A new approach is presented, which efficiently locates stable partitions by means of 

constrained minimization. This is motivated by the fact that, at present, an exhaustive search 

approach to SV partition design would be prohibitively costly and thus not feasible. Once 

stable partitions are located, a high quality interpolation polynomial is then assured by 

subsequently minimizing the dissipation and dispersion errors of the stable partitions. 

Preliminary results are given which indicate this to be an effective method for use in the 

design of stable and highly accurate SV partitions of arbitrary order. 
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CHAPTER 1.  INTRODUCTION 

1.1  Overview of computational fluid dynamics (CFD) 

Computational fluid dynamics (CFD) is a branch of fluid dynamics that focuses on 

solving the governing equations of fluid flow using digital computers. Although many of the 

basic ideas behind CFD are very old, the modern development of CFD could not begin until 

the early 1950’s with the advent of the digital computer. Problems that once required years of 

tedious hand calculations, could be solved in only seconds on a digital computer.  

One of the fundamental issues arising in the numerical solution of the governing 

equations of fluid dynamics is that fluid is a continuous medium which must be represented 

in a discrete manner to be understood by a digital computer. The process of converting 

continuous models and equations into a discrete form is referred to as discretization, and is 

essential in CFD. Selection of a particular discretization technique is heavily dependent on 

the type of problem and solution being sought. Since the advent of CFD, the primary focus 

has been on three different discretization techniques: the finite difference (FD), finite element 

(FE), and finite volume (FV) methods. These methods are outlined in Section 1.1.1.  

1.1.1  Some history 

In the early twentieth century, the numerical methods which would become a basis 

for one of the most common discretization techniques, the finite difference (FD) method, 

were maturing. In the FD method, the domain of interest is discretized into a finite number of 

mesh or grid points and the equations are cast in their differential form. Taylor series 
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expansions are then used to convert the governing partial differential equations (PDEs) into 

algebraic equations. Taylor series expansions can be carried out in many different ways 

which depend on the type of derivatives appearing in the governing equations, and on the 

desired accuracy of the approximation. For example, the equations could be derived for a 5-

point stencil, or a 9-point stencil as shown in Figure 1. If the 5-point stencil is used, Taylor 

series expansions are taken about the grid point i,j and derivatives are then expressed as 

algebraic differences of the flowfield quantities evaluated at the grid points. If high-order 

accuracy is sought, more points could be added to the stencil in order to retain more terms of 

the Taylor series, or the differencing could be done in a way that is compact [37], so as to 

avoid using a large stencil. The solution quantities to be updated in the FD method are the 

values of the flow variables at each grid point in the problem domain. 

             
 

                                     (a)                                                                  (b) 

Figure 1. Possible stencils for use with the finite difference method; (a) 5-point; (b) 9-
point. 

 

Another common discretization technique which emerged in the early 1940’s is the 

finite element (FE) method. The FE method was originally developed for solving problems in 
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elasticity, and structural analysis. In the FE method, the problem domain is subdivided  into a 

number of smaller elements, and the governing equations are cast in their integral form. Basis 

functions are then selected, as defined by nodes on each element, and used to support a 

piecewise-continuous functional representation of the solution on the domain. These 

traditional FE methods are not well suited for general fluid flow problems. Because of their 

continuous nature, they are very well suited for structural analysis problems which mostly 

deal with solution quantities which are continuous. More recently, a new FE method which is 

ideal for fluid flow problems, called the discontinuous Galerkin (DG) method [10-13], has 

been under development. The DG method will be subsequently described in Section 1.4. 

The final discretization method to be addressed here is the finite volume (FV) 

method. Like the FE method, in the FV method the equations are cast in their integral form, 

and the problem domain is subdivided into a number of smaller elements called volumes. 

The main difference between the FE and FV methods is that in the FE method, there is a 

unique set of nodes for which the solution is updated, while in the FV method, the solution 

quantities are volume-averages which vary from cell to cell. Also of significance is that in the 

FV method, there is no inherent continuity of the solution from one cell to another and it is 

thus equipped to handle problems which involve physical discontinuities of the flow 

variables in the problem domain. When discontinuities are present in the flow, a unique flux 

between cells does not exist. This problem is alleviated by using a Riemann flux to add the 

necessary upwinding and produce a unique flux across cell interfaces. The method outlined 

in the subsequent chapters borrows ideas from the FE and FV methods.   
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There are many relevant texts which were instrumental in the early years of CFD, and 

continue to be important references both for fundamental principles and for relevant 

historical information. In particular, the texts by Tannehill et al. [40], Anderson [2], and 

Hirsch [28,29] are very commonly referenced. 

1.1.2  Current state-of-the-art 

In recent years, CFD has become an indispensible tool in the design and analysis of 

vehicles which undergo motion in an atmosphere. Although there have been tremendous 

advances in digital computing which have permitted previously unrealizable calculations to 

be carried out, the speed and memory capacity of the digital computer continues to be the 

major limiting factor in CFD. Currently the direct numerical simulation (DNS) of turbulent 

flows for practical problems of interest, such as the three dimensional flow over an aircraft or 

spacecraft, is intractable. The numerical methods and understanding of the governing 

equations is mature, but resolution of the disparate length scales present in turbulent flows 

necessitates an extremely refined calculation which, at current, is not feasible. For this 

reason, much attention has gone into the development of different modeling techniques 

which avoid a direct solution of the Navier-Stokes equations. For example, The Reynolds-

Averaged Navier-Stokes (RANS) equations aim to provide information of the flowfield in an 

averaged sense, while Large Eddy Simulation (LES) attempts to resolve the large scales 

while filtering out the smaller scales of the flow. While historically the aforementioned 

methods have been of low-order accuracy, and primarily used on structured grids, many 

researchers are extending these methods for use with high-order numerical schemes on 

unstructured grids. This is done because unstructured grids are able to handle more complex 
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geometries, and high-order methods are capable of increased accuracy using far fewer grid 

cells. These techniques are explained in Sections 1.2 and 1.3, respectively. 

1.2  Structured vs. unstructured grids in CFD 

There are two major types of grids used in CFD analyses. These are referred to as 

either structured grids or unstructured grids. Structured grids take their name from the fact 

that they possess a discernible pattern which is characterized by an implicit connectivity 

between cells, or nodes. Conversely, unstructured grids may contain no discernible pattern 

and thus no implied connectivity exists between constituents.  

Structured grid methods typically utilize quadrilateral elements in 2D, and hexahedral 

elements in 3D. These methods are known to offer better resolution of the boundary layer for 

viscous flow problems, because most grid skewness problems can be avoided. It is however 

very difficult to generate a good structured grid for problems involving complicated 

geometries in which the resolution of extremely fine details is critical, such as rough surfaces 

or ice shapes for example. In addition, the creation of a high-quality structured grid can take 

weeks or even months to achieve by a skilled engineer. 

Unstructured grid methods typically utilize triangular elements in 2D, and tetrahedral 

elements in 3D, while many other cell types such as hexahedra, pyramids, and prisms are 

also popular. These methods are known to be very robust, and are capable of resolving 

extremely complicated geometries with very fine details. There are some circumstances 

where care must be taken to prevent an overly skewed grid, such as in the vicinity of a 

boundary layer or near a region of high curvature in the geometry. Unlike structured grids, 



www.manaraa.com

6 

 

 

the creation of a good unstructured grid can take only hours or even minutes to achieve, and 

can often be automated.  

Many problems have some features which would best be handled using structured 

grids, and other features which demand unstructured grids. For this reason, hybrid grid 

methods, which seek to combine the strengths of both structured and unstructured grids, are 

becoming very common. Typically hybrid grids employ a structured grid in localized areas, 

while using an unstructured grid for the majority of the problem domain. These grids can be 

very difficult to generate, and often require significant time and expertise. 

The appropriate choice of grid is heavily dependent on the type of problem under 

consideration, and the capabilities of the flow solver being used. Although each approach has 

its own strengths and weaknesses, all of the above approaches continue to see widespread 

used in CFD. This thesis concerns the development of unstructured grid CFD methods. 

1.3  High-order vs. low-order methods 

For a given problem, the difference between the governing partial differential 

equations (PDEs) and the discretized algebraic equations is referred to as the truncation error 

of the discretization. In CFD, this truncation error is proportional to the maximum grid 

spacing h, raised to some exponent p. The value of the exponent p is known as the order of 

the discretization. When the value of p is 2 or less, the scheme is referred to as being low-

order accurate, while for values of p greater than 2, the scheme is high-order accurate. 

Although high-order schemes have been gaining popularity, the state-of-the-art commercial 

CFD codes are still predominantly low-order. Low-order methods have been extremely 
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successful in engineering, and are sufficient for a wide range of applications given an 

adequately refined grid. Never-the-less, there are many problems of increasing interest which 

necessitate high-order methods on unstructured grids: Some examples include vortex-

dominated flows, rotorcraft flow/blade-vortex interaction problems, aero-acoustic noise 

predictions, and LES/DNS for complex configurations to name just a few. Many of these 

problems involve vortex structures which must be captured and preserved in order to 

represent the correct aerodynamic behavior. In problems like this, low-order methods tend to 

over-dissipate the vortices, resulting in a loss of important flow physics. On the other hand, 

high-order methods have very low numerical dissipation and are thus exceptionally well 

suited for the capture and preservation of vortices and other detailed flow features. Here we 

improve and expand upon an existing high-order accurate unstructured grid method. 

1.4  Review of popular CFD methods 

The spectral volume (SV) method is a recently developed finite volume method for 

hyperbolic conservation laws on unstructured grids [50-54,32,39]. The SV method belongs to 

a general class of Godunov-type finite volume method [17,46], which has been under 

development for several decades, and is considered to be the current state-of-the-art for the 

numerical solution of hyperbolic conservation laws. For a more detailed review of the 

literature on the Godunov-type method, refer to [47,50,49,15], and the references therein. 

Many of the most popular numerical methods, such as the k-exact finite volume [4,14], the 

essentially non-oscillatory (ENO) [24,1], and weighted ENO [30,57] methods are also 

Godunov-type methods. The SV method is also closely related to the discontinuous Galerkin 
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(DG) [10-13,3,5,57] method, a popular finite-element method for conservation laws, and the 

spectral difference [38] method. Both the SV and DG methods employ multiple degrees of 

freedom within a single element. Each simplex in the SV method utilizes a “structured” set of 

sub-cells, thus resulting in more cell faces where Riemann problems must be solved. This 

inherent property of sub-cell resolution may give the SV method the ability to capture 

discontinuities with higher resolution than the DG method. The number of interior faces in 

3D may be high, making the traditional SV method expensive in 3D. However, the 

methodology outlined in Section 3 dramatically reduces the cost of the 3D SV method. For 

more comparisons of the SV and DG methods, refer to [49,50,60].     

1.5  Motivation, objectives, and accomplishments of current work 

The additional cell faces present in the SV method, mentioned in Section 1.4, number 

in the dozens per SV for 2D and in the hundreds per SV for 3D. In the traditional 

implementation of the SV method, all face integrals are computed by means of Gauss 

quadrature formulas, which are appropriate to the shape and dimension of the face. For 

example, a pentagonal face existing in the partition of a tetrahedral SV (3D) is split into 3 

triangles. To carry out the integration, a Gauss quadrature formula of appropriate precision is 

then employed for each triangle. This procedure can be efficient in 2D, where the required 

Gauss quadrature points number in the dozens per SV. However in 3D, the partition of a 

tetrahedron can be so complicated that hundreds or thousands of Gauss quadrature points per 

SV may be necessary to compute the face integrals to the desired precision. Therefore, the 

first objective of this study is to increase the efficiency of the SV method by avoiding the use 
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of Gauss quadrature formulae in the computation of flux integrals. This will be referred to as 

the quadrature-free (QF) implementation of the SV method. Additionally, we will evaluate 

the new QF approach for the solution of both linear and nonlinear advection equations and 

the Euler equations in 2D and 3D. 

Although the new QF approach is much more efficient than the traditional approach, 

additional work still needs to be done to allow the solution of practical problems within a 

reasonable amount of time. To this end, the second main objective of this study is to extend 

the new QF approach to handle solution-based grid and polynomial adaptation, or local 

adaptive hp-refinement. We thus aspire to solve problems with complicated flow features 

while avoiding a global grid refinement study, in favor of adaptive local refinement 

techniques, to achieve grid independent solutions. We will develop and evaluate this 

technology in 2D and employ several well known inviscid flow test cases for validation. 

Finally, the data reconstruction in the SV method, and the resulting stability 

properties and polynomial quality for the scheme, is heavily dependent on the partitioning of 

the SV into CVs. Although some recent work has been done to develop new SV partitions 

with improved stability and accuracy properties [43-45], we feel that this study is very much 

incomplete and the ideal SV partitions have yet to be presented. For these reasons, we will 

develop a new methodology for determining stable and accurate SV partitions using ideas 

from constrained minimization. Preliminary results will be presented which show great 

potential of the method for use in the development of stable and highly accurate SV 

partitions.   
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The accomplishments of this work include the formulation, development, and 

application of an efficient new quadrature-free implementation of the high-order spectral 

volume method in both 2D and 3D. This objective also included the development of data 

limiters for problems involving discontinuities, and curved boundary treatments for the high-

order implementation of slip wall boundary conditions. The second major accomplishment of 

this work involved the formulation, development, and application of a solver for the 

quadrature-free spectral volume method which utilizes solution-based grid adaptation to 

efficiently resolve important flow features. This included the implementation of both h- and 

p-refinement techniques in a unified formulation where it is possible to perform either or 

both on any grid cell at any time. The final accomplishment of this work is the formulation 

and development of a new method for obtaining stable and highly accurate reconstruction 

stencils for the spectral volume method. This new approach utilizes constrained minimization 

techniques to locate stable reconstructions with very low dissipation and dispersion errors. 

1.6  Outline of dissertation 

  This thesis is organized as follows. In Chapter 2, we provide  the basic framework for 

the SV method. After that, an efficient new quadrature-free implementation is described in 

detail in Chapter 3, including data limiting procedures and curved boundary treatment. Some 

results from accuracy studies and several inviscid flow test cases are also given in Chapter 3. 

In Chapter 4, the methodology for local adaptive hp-refinement is given, with a study of 

different adaptation criteria, and relevant results including several supersonic cases with 

strong shock waves. Chapter 5 outlines the methodology for analyzing the stability properties 
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of the SV method, including partition generation and optimization via constrained 

minimization, as well as some preliminary results. Finally, a summary and some possibilities 

for future work are discussed in Chapter 6. 
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CHAPTER 2.  FRAMEWORK OF SPECTRAL VOLUME (SV) METHOD 

2.1  Overview of spatial and temporal discretization 

Consider the multidimensional conservation law 
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Q                                                                       (2.1a) 

on domain Ω × [0,T] and 3R⊂Ω  with the initial condition  

 ),,,()0,,,( 0 zyxQzyxQ =                                                                                             (2.1b) 

and appropriate boundary conditions on ∂Ω. In (2.1), x, y, and z are the Cartesian coordinates 

and (x,y,z)∈  Ω, t ∈ [0,T] denotes time, Q is the vector of conserved variables, and f, g and h 

are the fluxes in the x, y and z directions, respectively. Domain Ω is discretized into I non-

overlapping triangular (2D), or tetrahedral (3D) cells. In the SV method, the simplex grid 

cells are called SVs, denoted Si, which are further partitioned into CVs, denoted Ci,j, which 

depend on the degree of the polynomial reconstruction. Examples of partitions supporting 

linear, quadratic and cubic reconstructions are shown in Figure 2 (2D), and quadratic and 

cubic reconstructions are shown in Figure 3 (3D). The partitions shown in Figure 3 were 

taken from Chen [9]. Volume-averaged conserved variables on the CVs are then used to 

reconstruct a high-order polynomial inside the SV. To represent the solution as a polynomial 

of degree m, we need N pieces of independent information, or degrees of freedom (DOFs), 

calculated as follows: 
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                        (a)                                            (b)                                             (c) 
 

Figure 2. Partitions of a triangular SV supporting linear, quadratic and cubic data 
reconstructions, shown in (a) , (b) and (c), respectively. 

                           
                                  (a)                                                                    (b) 

Figure 3. Partitions of a tetrahedral SV supporting quadratic and cubic data 
reconstructions, shown in (a) and (b), respectively. 

 

where d is the spatial dimension of the problem. The DOFs in the SV method are the volume-

averaged conserved variables at the N CVs. Define the CV-averaged conserved variable for 

Ci,j as 

∫=
jiCji

ji QdV
V

Q
,,

,
1 ,    j=1,…,N,    i=1,…,I,                                                                   (2.3) 
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where Vi,j is the volume of Ci,j. Given the CV-averaged conserved variables for all CVs in Si, 

a polynomial pi(x,y,z) ∈  Pm (the space of polynomials of at most degree m) can be 

reconstructed such that it is a (m+1)th order accurate approximation to Q(x,y,z) inside Si. 

( ) ( ) ( )1,,,, ++= m
i hOzyxQzyxp ,     ( ) iSzyx ∈,, ,     i=1,…,I,                                       (2.4) 

where h is the maximum edge length of all the CVs. This reconstruction can be solved 

analytically by satisfying the following conditions: 

( )∫ =
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,,1 ,   j=1,…..,N.                                                              (2.5) 

This polynomial pi(x,y,z) is the (m+1)th order approximation we are looking for as long as the 

solution Q(x,y,z) is smooth in the region covered by Si. The reconstruction can be expressed 

more conveniently as 

( ) ( )∑
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where Lj(x,y,z) ∈  Pm  are the shape functions which satisfy 
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Some example plots of the shape functions for a degree 3 polynomial are shown in Figure 4. 

Integrating (2.1a) in Ci,j, we obtain 

( ) 01
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where F
r

= (f,g,h), Ar  represents the rth face of Ci,j , nr  is the outward unit normal vector of Ar, 

and K is the number of faces in Ci,j. More details of this can be found in [51]. If F
r

is a  
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Figure 4. Shape functions to support a degree 3 polynomial reconstruction for the 

partition shown in Figure 1c. The partition is projected below the shape function plot, 
with the corresponding CV in outlined in bold. 

nonlinear function of the conserved variables, then the surface integration on each face is 

performed with a (m+1)th-order-accurate Gauss quadrature formula; i.e.,  

∫ ∑
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⋅≅⋅
rA

J

q
rrrqrqrqrq AnzyxQFwdAnF

1
)),,(()( rrrr

,                                                              (2.9) 
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where J=integer[(m+2)/2] is the number of quadrature points on the rth face in 2D, wrq are the 

Gauss quadrature weights, and (xrq,yrq,zrq) are the Gauss quadrature points. Since the 

reconstructed solution is discontinuous across SV interfaces, the interface flux is not 

uniquely defined. Therefore the normal flux in (2.9) is replaced by a “numerical” Riemann 

flux, such as the Rusanov [36], Roe [35] or HLLC [25,41,42,6] flux. For example, the 

Rusanov flux can be written as 

( )[ ] ,)()()(
2
1),,(ˆ

nLRRLRL FnQFQQnQFnQFnQQF ≡⋅≅−−⋅+⋅≡
rrrrrrr α                   (2.10) 

where QL and QR are the reconstructed solution at the left (inside Ci,j) and right side (outside 

Ci,j) of Ar, α is the maximum absolute eigenvalue of the flux Jacobian in nr  direction, 

evaluated at an average state of  QL and QR. In [50], it was shown that the above SV scheme 

is (m+1)th order accurate. For time integration, we use the 3rd order Strong Stability-

Preserving (SSP) Runge-Kutta scheme [18], as shown in (2.11):  
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2.2  The data reconstruction 

One of the most important aspects of the SV method, as with any CFD method, is the 

data reconstruction. This plays a vital role in determining the accuracy and stability 

properties of the scheme, and thus should be given careful attention. The reconstruction 

stencil for the SV method is defined by the partitioning of the SV into CVs as shown in 

Figure 2 and Figure 3. Once a particular partition has been selected, the shape functions 
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defined by that partition are used to build a high-order polynomial for each SV, thus 

completing the reconstruction. These shape functions are computed as 

( ) ( ) 1,, −= RyxeyxL ,                                                                                                (2.12) 

where e(x,y) is the basis function vector [e1(x,y), e2(x,y), e3(x,y),…, eN(x,y)] which contains 

the complete polynomial basis given the dimension of the approximation space, and R is the 

reconstruction matrix computed by 
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where C,i denotes the ith control volume in the standard element. In general, the shape and 

partition of an SV can be arbitrary as long as a nonsingular reconstruction matrix is obtained. 

However, if a geometrically similar partition is applied to a simplex, the result is that even 

though the shapes of the SVs may be different, they all utilize the same reconstruction where 

the functional values of the shape functions at similar points are exactly the same. Thus, we 

focus our efforts solely on simplex SVs which are triangular (2D) or tetrahedral (3D), in 

which all CVs are comprised of planar polygons (2D) or planar polyhedra (3D).  
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Figure 5. Schematic illustrating mapping from a physical triangle to a standard right 

triangle. 
 To take advantage of the universality of the reconstruction for the SV method applied 

to a simplex, we must define a transformation from a physical simplex to a standard simplex. 

For example, consider the transformation Ψ: S→D, shown in Figure 5, which transforms an 

arbitrary triangle S to a right triangle D, the three dimensional analog of which is a 

transformation from an arbitrary tetrahedron to a right tetrahedron. Let us use (x, y) to denote 

coordinates in S and (ξ, η) to denote coordinates of D. Then, assume that r0=(x0,y0), r1=(x1,y1) 

and r2=(x2,y2) define the triangle in S, corresponding to (0,0), (1,0), and (0,1) in D, 

respectively. We can then write the transformation as 

( ) ( )ηξ 02010: rrrrrr −+−+=Ψ ,      ξ ≥ 0, η ≥ 0,     and     ξ + η ≤ 1.                  (2.14) 

Thus, since the above transformation is linear, it can be easily shown that  

 ( ) ( )Teyxe ηξ ,, = ,                                                                                                   (2.15) 

where T is the transformation matrix containing only the nodal positions of S. It can also be 

shown that  

 ηξdVddxdydV 2== ,                                                                                            (2.16) 

for the above 2D transformation, or 



www.manaraa.com

19 

 

 

ζηξ ddVddxdydzdV 6== ,                                                                                    (2.17) 

for a 3D transformation, where V is the volume of S. Substituting (2.15) and (2.16) into 

(2.12), yields 
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We thus have a universal reconstruction formula for evaluating the conserved variables at 

similar points. This reconstruction needs only to be carried out once, and this can be done 

analytically using a program such as Mathematica [55], or in the case of adaptive polynomial 

refinement it may be desirable to perform the reconstruction numerically on-the-fly as the 

simulation is running. An important distinction between the SV method and the FV method 

is that all CVs within an SV utilize the same data reconstruction, and thus the memory- and 

CPU-intensive reconstructions employed in a FV method can be solved analytically and no 

extra storage is required.  

 It was shown in [51] that the so-called Lebesgue constant computed as 

 ( )∑
=

Π =Γ
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,max ηξ

ηξ
,                                                                                         (2.19) 

gives a simple method of bounding the interpolation polynomial. Thus the smaller the 

Lebesgue constant ΠΓ  , the better the interpolation polynomial in terms of error bounds. 

However, although this criteria can be helpful in finding accurate SV partitions, it carries no 
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information about the stability properties of the resulting scheme, and is thus a necessary but 

not sufficient tool for designing SV partitions.  

2.3  Review of recent work 

 Recently, several different researchers have contributed to the development and 

application of the SV method. In particular, Haga et al. [19] implemented the 3D SV method 

in parallel and utilized the resources of the Earth simulator in an aerospace application. In 

Van den Abeele et al. [43-44], the stability properties of the SV method were analyzed in 

both 1D and 2D, respectively. In that work, several known SV schemes were found to suffer 

from weak instabilities, and new stable SV schemes were proposed. In Van den Abeele et al. 

[45], the stability properties of the 3D SV method were investigated, and again, some weak 

instabilities were revealed. In Chapter 5, we propose an improvement to the above stability 

analysis which uses a constrained minimization approach in the design of new stable SV 

partitions.  
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CHAPTER 3.  QUADRATURE-FREE IMPLEMENTATION OF SV 

METHOD 

3.1  Formulation of efficient new approaches 

In consideration of the potentially prohibitive cost of the SV method in 3D, we 

present two different approaches to compute the face integral in (2.8) more efficiently. These 

approaches are also described in Harris et al. [22,23], and Yang et al. [58]. In each approach, 

a nodal set is defined within each SV to support a polynomial reconstruction for the flux 

vector. The shape functions defined by this nodal set are then integrated analytically over a 

standard element, resulting in an analytical representation for the flux integral on all faces. 

This procedure is independent of the problem being solved, as opposed to a recently 

presented quadrature-free approach for the DG method [3] which relies on a flux expansion 

which is heavily problem dependent.  

For the methods presented here, the reconstruction is universal for all SVs if a nodal 

set is distributed in a geometrically similar manner for all SVs. The first approach employs 

the above methodology for the internal faces only, while using the Gauss quadrature 

formulas for faces bounding an SV. This approach will be referred to as the partial 

quadrature (PQ) approach. The second approach employs the above methodology for all 

faces, and is thus referred to as the quadrature-free (QF) approach. Both approaches are 

shown to be stable and convergent.  
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3.1.1  Quadrature-free (QF) approach 

In the QF approach, a nodal set, such as those shown in Figure 6, is selected from 

Hesthaven [26-27]. This nodal set is then used to reconstruct a high-order polynomial 

approximation for the flux vector, and then the flux integrals are computed analytically, 

without the need for Gauss quadrature formulas. If we assume Q, f, g and h to be all 

polynomials in (2.1a), obviously f, g and h should be one degree higher than Q. Therefore, a 

polynomial of degree m+1 is employed to reconstruct the flux vector. 

           
                      (a)                                              (b)                                              (c) 

Figure 6. Nodal sets in a triangular SV supporting quadratic, cubic and quartic data 
reconstructions for the flux vector, shown in (a), (b) and (c), respectively. 

The flux vector F
r

 can be computed at any point (x,y,z) by the following 
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where Ns is the number of nodes in the nodal set, calculated from (2.2), and iF
r

 is the flux 

vector at node i computed using the conserved variables at node i given by (2.6). Again, 

Q(x,y,z) and ),,( zyxF
r

 are taken to be continuous polynomials within each SV, thus (2.6) 

and (3.1) are valid within a given SV and not across SV boundaries, so interpolations are 
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only carried out locally within a given SV. Mi(x, y, z) are the shape functions defined by the 

nodal set which satisfy 

( ) .,, jnjjjn zyxM δ=                                                                                     (3.2)  

These are calculated by a procedure similar to that presented in Section 2.2, except that we 

are now dealing with nodal values of the solution instead of CV-averaged values. The above 

shape functions are thus computed as 
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where (ξi , ηi) is the location of node i in the standard element. Some representative 2D 

examples of the shape functions are shown in Figure 7 and Figure 8.  

(3.1) is integrated over each internal face, resulting in an analytical representation for 

the flux integral on all internal faces. This is done using a program capable of symbolic 

calculus, such as Mathematica [55]. Or, as will be discussed in Chapter 4, in the case of local 

adaptive p-refinement, it is desirable to perform the integration of (3.1) numerically and on-

the-fly as the grid and solution adapt. Regardless of the method of calculation, this allows for 

the flux integral on each internal face to be computed as a weighted average of the flux 

evaluated at the nodal set, i.e.;                                                        

,
1

∫ ∑
=

⋅=⋅
r

S

A

N

i
riir nFMAdSnF rrrr

                                                                                     (3.4) 

where iM are the face-averaged shape functions for face r. In practice, face-averaged shape 
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functions are computed during preprocessing for a standard element and then multiplied by 

the physical face area for computation. This eliminates the need to store all of the Jacobians. 

   

 
Figure 7. Shape functions in a triangular SV supporting a cubic data reconstruction for 

the flux vector. The node which each function corresponds to is shown in bold. 
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Figure 8. Shape functions in a triangular SV supporting a quartic data reconstruction 

for the flux vector. The node which each function corresponds to is shown in bold. 
 

Although the face integrals on internal faces are evaluated as above, some care is 

required for the faces bounding the SV.  Here, (2.10) is integrated over each SV-bounding 

CV face, and the resulting face integral can be expressed as the integral of a Riemann flux as 

follows:                                            

( )[ ],
2 ,,∫ −−+≅⋅

rA
LRcRnLn

r QQFF
A

dSnF αrr
                                                            (3.5) 
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where LnF ,  and RnF ,  denote the face-averaged normal component of the flux vector due to 

the SV to the left and right of the interface, respectively, and αc is taken as either the 

maximum absolute eigenvalue as in the Rusanov flux [36], or the dissipation matrix as in the 

Roe flux [35], which are evaluated at the face center. RQ and LQ are the face-averaged 

conserved variables due to the SV to the right and left of the interface, respectively. (3.5) can 

be deduced from the following analysis, which assumes a Rusanov flux. Since 

( ) ( ) ( )1,,,, ++= m
i hOzyxQzyxp , the following is also true,  
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                                                                                                (3.6a) 

and the maximum absolute eigenvalue can be expanded according to its value at the face 

center, i.e., ( ).hOc += αα  So we can say that 

( ) ( ) ( ).2++−=− m
LRcLR hOQQQQ αα                                                                      (3.6b) 

Integrating (3.6b) over a face, we obtain 

( ) ( ) ( ).2++−=−∫ m
rLRcr

A
LR hAOQQAdAQQ

r

αα                                                           (3.7) 

At each node shown in Figure 6, the flux is computed based on the reconstructed solution 

polynomial. Therefore, the flux error at each node of the nodal set is of order O(hm+1), i.e., 
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                                                                               (3.8)  
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where Fn is the (unknown) “exact” normal flux at the face. Integrating the 3rd equation in 

(3.8) over a face, we obtain  

( ) ( ) ( ).1
,,2

1
,,2

1 ++=+=+∫ m
rrnRnLnr

A
RnLn hAOAFFFAdAFF

r

                                          (3.9) 

So summarizing (3.7) and (3.9), we obtain 
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αrr
                              (3.10)  

If F
r

= constant, the following identity exists: 

∑∫
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=⋅
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.0rr
                                                                                                     (3.11)  

Therefore, we will gain an extra order of accuracy if we sum up the surface integrals for the 

faces of Ci,j; i.e.,  
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Since O(Vi,j) = O(Ar h), we have  
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Thus, if the surface integral in (2.8) is evaluated using (3.5), spatial accuracy of order m+1 is 

assured.  

To summarize, the first and second terms in (3.5) are computed as a weighted average 

of the flux evaluated at the nodal set of the left, and right SV, respectively using (3.4), and 

the third and fourth terms are computed as a weighted average of the cell-averaged conserved 

variables of the right and left SV, respectively, i.e. 
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where iL  are the face-averaged CV-based shape functions for face r. Again, these are 

computed during preprocessing for a standard element and then multiplied by the physical 

face area for computation.  

3.1.2  Partial-quadrature (PQ) approach  

The PQ approach uses a similar methodology as in the QF approach, namely (3.4) is 

used to evaluate the internal face integrals in (2.8), but for computation of the SV-bounding 

face integrals, the traditional Gauss quadrature approach via. (2.9) is used in favor of (3.5). 

This approach is introduced primarily as an additional validation case for the new 

methodology.   

3.1.3  Cost comparison of different approaches for flux integration 

In a quick comparison of the approaches, a 2D 3rd order SV method using the 

traditional “full quadrature” or FQ approach with 2 quadrature points per face necessitates 36 

flux calculations per SV, the PQ approach requires 28 flux calculations per SV, and the QF 

approach requires only 10 flux calculations per SV. Similarly, for a 4th order SV method, the 

number of flux calculations per SV is 54, 39, and 15 for the FQ, PQ, and QF approaches, 

respectively. So, the PQ and QF approaches are slightly more efficient than the FQ approach 

in 2D, but are much less costly to evaluate in 3D where the faces number in the hundreds. 

Table 1 summarizes the costs for the PQ and QF approaches in 2D and 3D.  
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Table 1.  Comparison of costs for PQ and QF approaches for vortex propagation 
problem (defined in Section 3.4) on 80x80x2 regular grid with single-stage time 

integration and Rusanov flux. 

 

   Order      Approach          CPU time(µs)/SV/iteration         Num. of flux calcs./SV/iteration    

                    2D                                   2D                             3D         

                 

       3          PQ                                31.63                               28                  200 

               QF                                 25.42  10                       20 

       4              PQ                                51.28                           39                           371 

                     QF                              46.92                                15                          35 

 

It is evident that the QF approach is slightly less expensive than the PQ approach in 2D in 

terms of CPU time, as expected. Although the real savings presents itself in 3D, which can be 

seen from the required flux calculations presented in Table 1.  

3.2  Data limiting for the QF approach 

For the non-linear Euler equations, it is necessary to perform data limiting to maintain 

stability if the solution contains discontinuities. There are many different ways of applying 

limiters in the system setting. Here we choose the primitive variable approach and enforce 

monotonicity using a TVD limiter. To this end, we first establish the following numerical 

monotonicity criterion for each SV 

maxmin ),,( irnynrnii zyx ψψψ ≤≤ ,                                                                              (3.15) 

where min
iψ and max

iψ are the minimum and maximum SV-averaged primitive variables 

{p,ρ,u,v,w} among all the neighboring SVs sharing a face (called face neighbors), or sharing 



www.manaraa.com

30 

 

 

a node (called node-neighbors), with Si, including the SV under consideration, and  

),,( rnrnrni zyxψ  are the reconstructed primitive variables at the nodal set of the SV under 

consideration. The SV-averaged primitive variables are computed by 

∑
=

=
SN

k
kkjiji M

1
,,, .ψψ                                                                                                    (3.16) 

and                                                                 

,1
1

,,∑
=

=
N

j
jiji

i
i V

V
ψψ                                                                                                    (3.17) 

where ji ,ψ  are the CV-averaged primitive variables, kjiM ,,  are the CV-averaged node-based 

shape functions, kψ are the primitive variables evaluated at node k, and Vi is the volume of 

SV i. The CV-averaged node-based shape functions, kjiM ,, , are computed during 

preprocessing for a standard element.  

In the cases considered here, only p and ρ are used in determining whether a given SV 

is to be limited to guarantee the positivity of p and ρ. Additionally, min
iψ  and max

iψ  are 

scaled by (1-є) and (1+є), respectively, where є << 1. This prevents unnecessary limiting 

based purely on numerical round-off. Here we use 10-8 < є < 10-3. Obviously if є is large, the 

limiter is no longer strictly TVD.  

If (3.15) is violated for any node in the nodal set of the SV under consideration, then 

it is assumed that the SV is close to a discontinuity, and all primitive variables in the SV are 

linear, i.e., 

., ii SConst ∈∀=∇ rψ                                                                                         (3.18) 
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The magnitude of this gradient is maximized subject to the monotonicity condition given in 

(3.15). The initial guess of the gradient iψ∇  for each SV is computed as 

  ∑
=

∇≅∇
N

j
jijii L

1
,, ψψ                                                                                                  (3.19)                        

where jiL ,∇ represents the SV-averaged gradient of the CV-based shape functions. Previous 

work has used the gradient at the center of the SV as the guess gradient [51]. In general, for 

high-order polynomials, the gradient at the SV center may be inadequate for this procedure, 

so (3.19) is used instead. Still, the gradient iψ∇  in (3.19) may not satisfy (3.15). Therefore it 

is limited by multiplying by a scalar 0 ≤ φ ≤ 1. The scalar is computed from 
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This concludes the formulation for a TVD limiter. If necessary, the above primitive variable 

formulation can be converted to a conservative variable formulation if Ψ is replaced with Q. 

This turns out to work better for some situations, as will be mentioned in Section 4.3. 

Although the above limiting procedure guarantees the positivity of  p and ρ provided 

their SV-averages are positive, a negative p or ρ could still result from an update step in the 

time integration. So, and additional measure needs to be in place to prevent this catastrophic 

situation from occurring. This is a moot point for steady simulations, since the pressure or 

density could just be overwritten with small positive values before the eigenvalue 
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computation, and the results would likely still converge to the correct steady-state solution. 

However, we are interested in solving unsteady flow problems, so such a quick fix is not 

sufficient. Here when we update the solution for each time-step, and sub time-step, we check 

to see if the update produced a negative p or ρ at any point where an eigenvalue, or 

dissipation matrix as in Roe flux, calculation must be performed. If negative p or ρ are 

detected in this manor, we go back and locally redo the update step with a decreased time 

step size. Since this correction is only activated to avoid catastrophic oscillations, the error 

introduced should be negligible. 

3.3  Curved boundary implementation for QF approach 

  One of the biggest advantages of high-order methods over low-order methods is their 

ability to achieve better solution accuracy using far fewer degrees-of-freedom when the 

solution is smooth. However, for problems involving curved wall boundaries which are 

represented by line-segments or planar-facets, an inordinate amount of elements may be 

necessary just to preserve the geometry with adequate precision. A much more desirable 

approach is to represent curved boundaries with high-order polynomials that are compatible 

with the order of the data reconstruction. We present three different methodologies to 

accomplish this, the isoparametric element approach [54], a new simplified approach, and the 

approach of Krivodonova and Berger [31]. 

3.3.1  Isoparametric element approach 

The first approach, and most expensive, involves the use of high-order SVs with one 

or more curved sides. These physically nonlinear SVs are referred to as isoparametric 



www.manaraa.com

33 

 

 

elements, which are commonly used in the finite element community. The main complication 

arising from the application of this technique to the SV method is that the traditional 

definition of the cell-averaged conserved variables, as given in (2.3), must now be modified 

to account for CVs which are no longer planar polygons (2D) or planar polyhedra (3D). 

This procedure involves a number of steps. First, the wall boundary which is to be 

treated as curved is identified. Then, a cubic-spline routine is employed to fit a piecewise 

cubic polynomial along the entire curved surface. Now that we have a cubic polynomial 

defined for each SV face on a curved boundary, we have essentially created new nonlinear 

SVs on the curved boundary, or isoparametric elements. Following the usual practice [54], 

isoparametric SVs can be used to map SVs with curved boundaries into the standard SV. 

Assume that a one-to-one transformation exists between a general SV in the physical space 

(x,y) and the standard triangle in the computational domain (ξ,η) as shown in Figure 9, i.e.,  

( )
( ).,

,,
yx
yx

ηη
ξξ

=
=

                                                                                                             (3.21)   

 
Figure 9. Transformation of a general SV in the physical domain to the standard 

triangle in the computational domain. 
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The partition of the SV is performed in the standard triangle, and the partition in the physical 

domain is the result of the inverse transformation from the computational domain back to the 

physical domain as shown in Figure 10.                   

( )
( ).,

,,
ηξ
ηξ

yy
xx

=
=

                                                                                                             (3.22)    

Therefore, a necessary condition for a valid transformation is that the inverse transformation 

exists. 

 
Figure 10. Transformation of the partition from the standard triangle in the 

computational domain to the general SV in the physical domain. 

 

 The DOFs for the general SV are then given as 
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where J is the Jacobian matrix of the transformation, i.e., ( )
( )ηξ ,

,
∂
∂

=
yxJ . The reconstruction 

problem then becomes: given the CV-averaged conserved variables of an SV, build a degree 

m polynomial ( )ηξ ,ip  such that 

( ) ., , ∫∫ =
D

ji
D

i ddJQddJp ηξηξηξ                                                                           (3.24) 
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In the most general case, a quadratic isoparametric SV requires the specification of 6 

nodes, as shown in Figure 11a. The transformation can be expressed as 

( ) ,,
1

j

N

j
j rCr ηξ∑

=

=                                                                                                    (3.25) 

where r=(x, y). The shape functions for a quadratic SV in 2D can be written as                                                 
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However in most cases it is not necessary to use the most general isoparametric SV since 

only one boundary of the SV is usually curved as shown in Figure 11b and Figure 11c. As a 

result, simplified curved SVs (SCSV) can be used. The shape functions for the quadratic 

SCSV are given as 

( ) ( )
( ) ( )
( )
( ) ( ),14,

,,
,2,

,231,

4

3

2

1

ηξξηξ
ηηξ

ηξξξηξ
ηηξξξηξ

−−=
=

++−=
−++−=

C
C
C
C

                                                                           (3.27) 

and the shape functions for the cubic SCSV, as shown in Figure 11c, are given as 
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                                   (a)                                (b)                                  (c) 

Figure 11. Quadratic (a), simplified quadratic (b), and simplified cubic (c) SVs with 
three and one curved boundaries, respectively. 

 

More information on the isoparametric element approach can be found in Wang and Liu [54]. 

3.3.2  Simplified approach 

One drawback of the isoparametric element approach is that it necessitates computation 

and storage of a separate reconstruction for each and every wall-bounding cell. For large 

problems, and especially in 3D, the memory requirement can become large. Here we present 

an approach in which the geometry is represented with high fidelity, but a separate 

reconstruction for every wall-bounding cell is avoided. Similar approaches have been 

recently presented by Krivodonova and Berger [31], and Luo et al. [33]. The basic idea 

employed here is that the flux integrals are carried out on the physically curved faces using 

the polynomial reconstruction from a linear SV, as opposed to a curved SV. This allows us to 

employ the same reconstruction for the SVs on curved boundaries that is already in use for 

all other SVs. Since the curvature will usually be very small, this is a reasonable 

approximation. 

  As with the previous method, a cubic-spline routine is employed to fit a piecewise 

cubic polynomial along the entire curved surface. Then (3.25) and (3.27) or (3.28) can be 
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used to map points from a standard SV, into an SV with one quadratic or cubic side. Since 

we are not computing a new reconstruction based on isoparametric SVs, the purpose of this 

transformation is to modify the SVs such that the endpoints of the faces of wall-bounding 

CVs lie on the curved SV face. This is shown in Figure 12 for clarity. The node locations and 

face endpoints are computed using (3.25) and (3.27) or (3.28), and the face endpoints are all 

connected with straight lines.  

                         
Figure 12. Traditional SV partition transformed to accommodate curved-wall 

boundary. 

 

Although the CV faces themselves remain linear, with the CV face endpoints situated on the 

curved SV face, the flux integration can be carried out along the curved face and still satisfy 

conservation. Since the reconstruction is only universal for geometrically similar partitions 

and node distributions, there is some error inherent to the geometrical dissimilarity of the 

SVs on curved wall boundaries. In most situations, the SVs on curved wall boundaries will 

be small compared to all other SVs, and accordingly the degree of nonlinearity of these SV 

faces will also be small. It is thus reasoned that any error introduced in the reconstruction due 

to the presence of geometrically dissimilar SVs on curved wall boundaries will likely be 

small. 

Let the equation of the rth wall-bounding face of Ci,j in the standard SV be  
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,0=η     .21 rr ξξξ <<                                                                                             (3.29) 

Then the surface integral in (2.8) can be written as 
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This line integral in the standard element can be evaluated using the standard Gauss 

quadrature formula 

( ) ( )∑∫
=

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

J

q
rqNrqrr Fwd

d
dx

d
dyF

r

r 1
12

2

1

, ξξξξ
ξξ

ξ

ξ

r
,                                                   (3.31) 

where wrq represent the Gauss quadrature weights, and ⎟⎟
⎠

⎞
⎜⎜
⎝
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−⋅=

ξξ d
dx

d
dyFFN ,

r
 denotes 

the dot product of the flux vector with the area normal vector. More information on this 

approach can be found in Harris et al. [22]. 

3.3.3  Krivodonova and Berger approach 

  Here we follow an approach by Krivodonova and Berger [31] originally developed 

for the DG method in which the geometry is represented with high fidelity, but a separate 

reconstruction for every wall-bounding cell is avoided. The basic idea employed here is that 

straight-sided SVs, rather than curved SVs, are employed at wall boundaries, but a no-flow 

boundary condition is enforced for the physical boundary as opposed to the computational 

(piecewise-linear or planar-faceted) boundary. This allows us to utilize the same 

reconstruction for the SVs on curved boundaries that is already in use for all other SVs.  

  As with the previous method, a cubic-spline routine is employed to fit a piecewise 

cubic polynomial along the entire curved surface. Then (3.25) and (3.27) or (3.28) are used to 
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map points from a standard SV, into an SV with one quadratic or cubic side. The unit-normal 

vector at any point on the curved face is then computed by 
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It is important to note that the vector nr  is used only to define a ghost state at quadrature 

points, or nodes, located on curved-wall boundaries. The numerical flux is still computed 

through the straight-sided boundary. Thus, for the PQ approach, nr  must be computed and 

stored for each quadrature point on every curved-wall bounding SV. Whereas, in the QF 

approach, nr  must be computed and stored for each node in the nodal set of wall-bounding 

SVs that lies on the wall-bounding face. Additionally, nr  must be computed and stored at the 

CV face centers for curved-wall bounding SVs, to be used for computing the eigenvalue or 

dissipation matrix. Note that for simple geometries such as a cylinder, the above process is 

unnecessary as the normals can be computed directly.  

 

3.4  Results 

In this section, the efficient QF implementation of the SV method is evaluated for 2D 

scalar advection and Burger’s equations, and for the 2D Euler equations. Both 3rd-order and 

4th-order partitions are evaluated. The 3rd-order partition, and the corresponding nodal set to 

support a cubic reconstruction for the flux vector are shown in Figure 2b, and Figure 6b, 

respectively. The 4th-order partition, and the corresponding nodal set to support a quartic 
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reconstruction for the flux vector are shown in Figure 2c, and Figure 6c, respectively. The 

numerical error is assessed using both regular and irregular grids, as shown in Figure 13. The 

finer grids are generated recursively by cutting each courser grid cell into four finer grid 

cells.  

               
                                    (a)                                                                       (b) 

Figure 13. Regular and irregular grids for validation cases: (a) regular (10x10x2); (b) 
irregular (10x10x2). 

The third-order SSP Runge-Kutta scheme is used for time integration in all cases. 

Also, all errors presented are time-step independent because the time step tΔ  was made small 

enough so that the errors are dominated by the spatial discretization. The initial CV-averaged 

solutions were computed using the CV-averaged node-based shape functions. In this way, the 

solution is initialized at the nodal set, and the CV-averaged solutions are computed as a 

weighted average of these nodal values. This avoids the need for a high-order Gauss 

quadrature initialization. The solution is taken as converged when the L2 norm of the residual 

is reduced by 10 orders of magnitude in all cases. The L2 norm of the density residual is used 

for the Euler equation simulations.  
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3.4.1.  Accuracy study with 2D linear advection equation 

In this case, we test the accuracy of the SV method on the 2D linear advection 

equation: 

  0=
∂
∂

+
∂
∂

+
∂
∂

y
Q

x
Q

t
Q ,   11 ≤≤− x ,  ,11 ≤≤− y                                                          (3.33)  

  )(sin)0,,( yxyxQ += π ,  periodic boundary condition. 

The numerical solutions were carried out until t=1 for this time-accurate problem. In Table 2 

and Table 3, we present the L1 and L∞ errors and orders for regular and irregular grids, 

respectively. 

Table 2.  Accuracy of 2D linear advection equation at t=1 on regular grids. 

Order of accuracy Grid L1 error L1 order L∞ error L∞ order 

3 10x10x2 1.33e-3 - 3.29e-3 - 

 20x20x2 1.73e-4 2.94 4.47e-4 2.88 

 40x40x2 2.19e-5 2.98 5.77e-5 2.95 

 80x80x2 2.76e-6 2.99 7.29e-6 2.98 

4 10x10x2 7.10e-5 - 2.44e-4 - 

 20x20x2 4.38e-6 4.02 1.56e-5 3.97 

 40x40x2 2.73e-7 4.00 9.78e-7 3.99 

 80x80x2 1.71e-8 4.00 6.12e-8 4.00 

 

Grid refinement is carried out until both the L1 and L∞ orders are sufficiently demonstrated. 

For this case, the PQ results are identical to the QF results, as expected for a linear equation, 

so just the QF results are presented. The formal order of accuracy is observed, using both 

regular and irregular grids. 



www.manaraa.com

42 

 

 

Table 3.  Accuracy of 2D linear advection equation at t=1 on irregular grids. 

Order of accuracy Grid L1 error L1 order L∞ error L∞ order 

3 10x10x2 3.12e-3 - 1.57e-2 - 

 20x20x2 4.09e-4 2.93 1.93e-3 3.02 

 40x40x2 5.36e-5 2.93 3.37e-4 2.52 

 80x80x2 6.99e-6 2.94 6.18e-5 2.45 

4 10x10x2 2.62e-4 - 1.50e-3 - 

 20x20x2 1.56e-5 4.07 1.13e-4 3.73 

 40x40x2 9.67e-7 4.02 8.23e-6 3.77 

 80x80x2 6.03e-8 4.00 5.38e-7 3.94 

 

3.4.2.  Accuracy study with Burger’s equation 

  In this case, we test the accuracy of the SV method on the 2D Burger’s equation: 

  02/2/ 22

=
∂

∂
+

∂
∂

+
∂
∂

y
Q

x
Q

t
Q ,      11 ≤≤− x ,    ,11 ≤≤− y                                           (3.34)  

  )(sin
2
1

4
1)0,,( yxyxQ ++= π ,  periodic boundary condition.  

The numerical solutions were carried out until t=0.1 for this time-accurate problem. At this 

time the solution is still smooth, so data limiting is not necessary. In Table 4 and Table 5, we 

present the L1 and L∞ errors and orders for regular and irregular grids, respectively. Grid 

refinement is carried out until both the L1 and L∞ orders are sufficiently demonstrated. 

Results from the PQ and QF approaches are not identical for this case, but they are very 

similar, so again only the QF results are shown. The formal order of accuracy is again 

observed, using both regular and irregular grids. 
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Table 4.  Accuracy of 2D Burger’s equation at t=0.1 on regular grids. 

Order of accuracy Grid L1 error L1 order L∞ error L∞ order 

3 10x10x2 3.96e-4 - 1.63e-3 - 

 20x20x2 6.49e-5 2.61 3.97e-4 2.03 

 40x40x2 1.03e-5 2.66 7.01e-5 2.50 

 80x80x2 1.55e-6 2.73 1.12e-5 2.65 

4 10x10x2 3.28e-5 - 3.77e-4 - 

 20x20x2 2.39e-6 3.78 3.26e-5 3.53 

 40x40x2 1.74e-7 3.77 2.89e-6 3.49 

 80x80x2 1.23e-8 3.83 2.08e-7 3.80 

 

Table 5.  Accuracy of 2D Burger’s equation at t=0.1 on irregular grids. 

Order of accuracy Grid L1 error L1 order L∞ error L∞ order 

3 10x10x2 6.42e-4 - 3.35e-3 - 

 20x20x2 1.17e-4 2.45 9.96e-4 1.75 

 40x40x2 1.88e-5 2.65 2.66e-4 1.90 

 80x80x2 2.91e-6 2.69 6.12e-5 2.12 

 160x160x2 4.41e-7 2.72 1.14e-5 2.43 

 320x320x2 6.51e-8 2.76 1.88e-6 2.59 

4 10x10x2 8.35e-5 - 1.16e-3 - 

 20x20x2 6.20e-6 3.75 1.43e-4 3.02 

 40x40x2 4.57e-7 3.76 1.26e-5 3.51 

 80x80x2 3.28e-8 3.80 1.06e-6 3.56 

3.4.3.  Accuracy study with 2D vortex propagation problem 

The unsteady 2D Euler equations in conservative form can be written as 

0=
∂
∂

+
∂
∂

+
∂
∂

y
G

x
F

t
Q ,                                                                                                (3.35) 
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where Q is the vector of conserved variables, F and G are the inviscid flux vectors given 

below: 
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Here ρ  is the density, u and v are the velocity components in x and y directions, p is the 

pressure, and E is the total energy. The pressure is related to the total energy by  

( )22

2
1

1
vupE ++

−
= ρ

γ
 ,                                                                                       (3.37) 

with ratio of specific heats γ. In all of the simulations in this paper, γ is taken to be 1.4. This 

is an idealized problem for the Euler equations in 2D. The mean flow is { }pvu ,,,ρ ={ }1,1,1,1 . An 

isotropic vortex is then added to the mean flow, i.e. with perturbations in u, v, and 

temperature T = p/ρ, and no perturbation in entropy S=p/ργ: 

  ( ) ( ) ( )xyevu r ,
2

,
215.0 −= −

π
εδδ ,     ( ) 21

2

2

8
1 reT −−

−=
γπ

εγδ ,     0=Sδ ,  

where 222 yxr += , 5−= xx , 5−= yy , and the vortex strength ε = 5. If the computational 

domain extends to infinity, the exact solution of the Euler equations with the above initial 

conditions is just the passive convection of the isotropic vortex with mean velocity (1, 1). In 

the following accuracy study, the computational domain is taken to be [0, 10] x [0, 10], with 

characteristic inflow and outflow boundary conditions imposed on the boundaries. The 

numerical solution is carried out until t = 2 on both regular and irregular grids. No limiters 

are employed in this study since the problem is smooth, and the Rusanov flux is used in all 
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simulations. In Table 6 and Table 7, we present the L1 and L∞ errors and orders in the CV-

averaged density for the regular grids using the PQ and QF approaches, respectively.  

Table 6.  Accuracy of 2D vortex propagation problem at t=2 on regular grids using PQ 
approach. 

Order of accuracy Grid L1 error L1 order L∞ error L∞ order 

3 10x10x2 1.41e-3 - 4.09e-2 - 

 20x20x2 2.51e-4 2.49 4.88e-3 3.06 

 40x40x2 4.30e-5 2.54 1.05e-3 2.22 

 80x80x2 6.88e-6 2.65 1.95e-4 2.42 

 160x160x2 1.05e-6 2.71 3.16e-5 2.63 

4 10x10x2 6.08e-4 - 9.98e-3 - 

 20x20x2 4.95e-5 3.62 1.12e-3 3.16 

 40x40x2 3.03e-6 4.03 1.14e-4 3.30 

 80x80x2 1.92e-7 3.98 7.28e-6 3.96 

 160x160x2 1.36e-8 3.82 6.22e-7 3.55 

 

Table 8 and Table 9 show the L1 and L∞ errors and orders for the irregular grids using the PQ 

and QF approaches, respectively. Comparison of the PQ and QF approaches for this case 

show very similar behavior. The formal order of accuracy is demonstrated for all cases.  
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Table 7.  Accuracy of 2D vortex propagation problem at t=2 on regular grids using QF 
approach. 

Order of accuracy Grid L1 error L1 order L∞ error L∞ order 

3 10x10x2 1.44e-3 - 5.00e-2 - 

 20x20x2 2.53e-4 2.51 5.05e-3 3.31 

 40x40x2 4.32e-5 2.55 1.07e-3 2.24 

 80x80x2 6.89e-6 2.65 1.98e-4 2.44 

 160x160x2 1.05e-6 2.71 3.17e-5 2.64 

4 10x10x2 5.49e-4 - 9.16e-3 - 

 20x20x2 4.82e-5 3.51 8.90e-4 3.36 

 40x40x2 3.04e-6 3.99 1.07e-4 3.06 

 80x80x2 1.92e-7 3.99 6.97e-6 3.94 

 160x160x2 1.36e-8 3.82 6.12e-7 3.51 

 

 

Table 8.  Accuracy of 2D vortex propagation problem at t=2 on irregular grids using 
PQ approach. 

Order of accuracy Grid L1 error L1 order L∞ error L∞ order 

3 10x10x2 1.11e-3 - 2.67e-2 - 

 20x20x2 1.85e-4 2.58 3.23e-3 3.04 

 40x40x2 3.00e-5 2.63 6.91e-4 2.23 

 80x80x2 4.76e-6 2.66 1.32e-4 2.39 

 160x160x2 7.36e-7 2.69 1.95e-5 2.75 

4 10x10x2 3.46e-4 - 8.38e-3 - 

 20x20x2 3.07e-5 3.49 4.52e-4 4.21 

 40x40x2 2.07e-6 3.89 4.87e-5 3.21 

 80x80x2 1.42e-7 3.87 3.89e-6 3.65 

 160x160x2 9.49e-9 3.90 3.66e-7 3.41 
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Table 9.  Accuracy of 2D vortex propagation problem at t=2 on irregular grids using 
QF approach. 

Order of accuracy Grid L1 error L1 order L∞ error L∞ order 

3 10x10x2 1.11e-3 - 3.21e-2 - 

 20x20x2 1.87e-4 2.57 3.36e-3 3.26 

 40x40x2 3.01e-5 2.63 7.15e-4 2.23 

 80x80x2 4.76e-6 2.66 1.33e-4 2.43 

 160x160x2 7.36e-7 2.69 1.96e-5 2.76 

4 10x10x2 3.44e-4 - 6.75e-3 - 

 20x20x2 2.96e-5 3.54 4.42e-4 3.93 

 40x40x2 2.05e-6 3.85 4.60e-5 3.26 

 80x80x2 1.41e-7 3.86 3.75e-6 3.61 

 160x160x2 9.49e-9 3.90 3.58e-7 3.39 

 

3.4.4.  Accuracy study with 3D vortex propagation problem 

The unsteady 3D Euler equations in conservative form can be written as 
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Q ,                                                                                      (3.38) 

where Q is the vector of conserved variables, F, G, and H are the inviscid flux vectors given 

below: 
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Here ρ  is the density, u, v, and w are the velocity components in x, y and z directions, p is 

the pressure, and E is the total energy. The pressure is related to the total energy by  

( )222

2
1

1
wvupE +++

−
= ρ

γ
,                                                                               (3.40) 

with ratio of specific heats γ=1.4. This is an idealized problem for the Euler equations in 3D. 

The mean flow is { }pwvu ,,,,ρ ={ }1,0,1,1,1 . An isotropic vortex is then added to the mean 

flow, i.e. with perturbations in u, v, and temperature T = p/ρ, and no perturbation in entropy 

S=p/ργ: 

  ( ) ( )( )0,,
2

,,
215.0 xyewvu r −= −

π
εδδδ ,     ( ) 21

2

2

8
1 reT −−

−=
γπ

εγδ ,     0=Sδ ,  

where 222 yxr += , 5−= xx , 5−= yy , and the vortex strength ε = 5. If the computational 

domain extends to infinity, the exact solution of the Euler equations with the above initial 

conditions is just the passive convection of the isotropic vortex with mean velocity (1, 1, 0). 

In the following accuracy study, the computational domain is taken to be [0, 10] x [0, 10] x 

[0, 10] with characteristic inflow and outflow boundary conditions imposed on the 

boundaries. The numerical solution is carried out until t = 2 on regular grids generated from 

uniform hexahedral grids, whereby each hexahedral cell is split into six tetrahedra. No 

limiters are employed in this study since the problem is smooth, and the Rusanov flux is used 

in all simulations. In Table 10, we present the L1 and L∞ errors and orders in the CV-averaged 

density using the QF approach. The formal order of the scheme is essentially verified, with 

about a half order drop for 3rd order. In order for convergence to the formal order of 
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accuracy, it may be necessary to use finer grids for this case. Contours of Mach number and 

some streamlines for this case are shown in Figure 14. 

Table 10.  Accuracy of 3D vortex propagation problem at t=2 on regular grids. 

Order of accuracy Grid L1 error L1 order L∞ error L∞ order 

2 10x10x10x6 6.07e-3 - 1.16e-1 - 

 20x20x20x6 1.56e-3 1.96 3.98e-2 1.54 

 40x40x40x6 3.92e-4 1.99 9.82e-3 2.02 

3 10x10x10x6 1.34e-3 - 6.03e-2 - 

 20x20x20x6 2.23e-4 2.59 6.33e-3 3.25 

 40x40x40x6 3.94e-5 2.50 1.07e-3 2.56 

 

 
Figure 14.  Contours of Mach number and some streamlines for 3D vortex propagation 

case at t=2. 
 

3.4.5.  Zalesak’s disk rotation problem 

The rigid body rotation of Zalesak’s disk (notched circle in 2D) under a constant 

vorticity velocity field [59] is employed to demonstrate the ability of the limiter to preserve 
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discontinuities. The computational domain is taken to be [0, 1] x [0, 1], and the notched 

circle centers at (0.5, 0.75) with radius 0.15 and the slot has a width of 0.05 and length of 

0.2479. The velocity field is given by: 

5.0
5.0
−=

−=
xv

yu  .                                                                                                            (3.41)                         

The conserved variable is initialized to +1 inside the notched circle, and -1 everywhere else. 

The numerical solution is carried out until t=2π, which constitutes one full revolution of the 

disk. Figure 15 shows results for 2nd and 3rd order QF schemes on regular 80x80x2 and 

160x160x2 grids.  

   
 

Figure 15.  Zero contour for Zalesak’s disk rotation problem. (a) 2nd order; (b) 3rd 
order. 

 

It is evident that both the 2nd and 3rd order schemes capture the sharp features of the disk 

reasonably well. The 3rd order SV scheme obviously captures the discontinuity with higher 

resolution than the second order scheme, as expected.  
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3.4.6.  Mach 3 wind tunnel with a step 

This problem was studied extensively by Woodward and Colella [56], and has been 

widely used to assess the performance of shock-capturing methods. The 2D wind tunnel is 3 

units long and 1 unit wide, with a step of 0.2 units high located at 0.6 units from the tunnel 

inlet. The initial condition is a Mach 3 right-going uniform flow. Inviscid wall boundary 

conditions (reflective) are used for tunnel wall boundaries, while inflow and outflow 

boundary conditions are used at the inlet and exit of the wind tunnel. It is well known that the 

corner of the step is a singularity, and often leads to a spurious Mach stem at the downstream 

bottom wall, and an erroneous entropy layer at the bottom wall. In [56], various numerical 

treatments were used to remedy these artifacts. In the present study, no special treatments 

were used for the singularity to see how the singularity affects the numerical solutions.  

It was shown in [53] that the 4th order partition in Figure 2c produces large errors for 

this case, due likely to the nonuniform sub-cell mesh, so this study will focus on the 2nd and 

3rd order partitions shown in Figure 2a and Figure 2b, respectively. Two different grids are 

considered here, consisting of 8,746 and 37,146 triangles, the coarsest of which is shown in 

Figure 16.  

 
Figure 16. A coarse mesh for the supersonic wind tunnel problem with 8,746 triangles. 
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Thus, the number of degrees-of-freedom for the 2nd order case is 26,238 and 111,438, 

respectively, and the number of degrees-of-freedom for the 3rd order case is 52,476 and 

222,876, respectively. All simulations are carried out until t=4. The results obtained using the 

QF approach with Rusanov flux are nearly identical to those obtained using the PQ 

approach, so only the QF results with Rusanov flux are shown here. The node-neighbor 

stencil for data limiting is used for all cases here, as the face-neighbor stencil causes too 

many cells to be limited, essentially reducing the schemes to low order.  

The computed density contours for the 2nd and 3rd order simulations on all grids are 

shown in Figure 17 and Figure 18, respectively. Obviously, the resolution of the 3rd order 

results is better than that of the 2nd order results, while the 3rd order results are slightly more 

oscillatory than the 2nd order results.  
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(a)  

(b)  

Figure 17. Density contours for the 2nd order scheme. Thirty even contour lines 
between 0.09 and 4.53; (a) 26,238 DOFs; (b) 111,438 DOFs. 

 

This behavior is consistent with the results found in [53]. For example, the spurious Mach 

stems in the 3rd order results are considerably weaker than those in the 2nd order results. Also, 

the instability generated by the slip line begins to become visible in the 3rd order results on 

the fine mesh. It should be noted that the resolution of the results in [53] is slightly better 

than those presented here due to the presence of sub-cell resolution in the limiter. Never-the-
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less, the results presented here show similar trends for the density contours, and the strength 

of the spurious Mach stem is dramatically reduced under h-refinement. 

(a)  
 

(b)  
 

Figure 18. Density contours for the 3rd order scheme. Thirty even contour lines 
between 0.09 and 4.53; (a) 52,476 DOFs; (b) 222,876 DOFs. 

 

3.4.7.  Subsonic flow over a circular cylinder 

A subsonic inviscid flow over a circular cylinder at Mach = 0.3 is selected to test the 

curved boundary representation. Due to flow symmetry, only the top half of the physical 

domain is selected as the computational domain although the complete physical domain is 

displayed in all of the figures. The far field boundary is located 20 diameters away from the 
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cylinder center and the characteristic inflow/outflow boundary conditions are used at the far 

field boundary. In order to perform a grid refinement accuracy study, three different 

triangular grids were generated from three structured grids with 32x8, 64x16 and 128x32 

cells, which are shown in Figure 19.  

                     

                      (a)                                             (b)                                              (c) 

Figure 19. Computational grids for flow over a circular cylinder; (a) 32x8x2 cells; (b) 
64x16x2 cells; (c) 128x32x2 cells. 

 
The solution is initialized to a uniform free stream. All simulations employ the 

simplified curved boundary treatment of Krivodonova and Berger [31] outlined in Section 

3.3.3. The simplified approach of Section 3.3.2 gives results that are very similar to the 

approach of Section 3.3.3, but we advocate the latter approach because of its efficiency and 

ease of implementation. The simulations were also run using a piecewise-linear boundary 

representation, but the solution quickly diverged in all cases. Also, even with the curved 

boundary treatment, the use of the Rusanov flux in the QF approach can lead to instabilities 

due to spurious entropy production at the trailing edge. This is overcome by the use of either 

the Roe [35], or HLLC [25,41,42,6] flux.  
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Figure 20 and Figure 22 show results for the PQ approach and the HLLC flux for 

both 3rd and 4th order simulations, respectively, and Figure 21 and Figure 23 show results for 

the QF approach and the Roe flux for both 3rd and 4th order simulations, respectively.  

 

   
                       (a)                                              (b)                                             (c) 

Figure 20. Mach contours computed with 3rd order PQ approach and HLLC flux. (a) 
3,072 DOFs. (b) 12,288 DOFs. (c) 49,152 DOFs. 

 

   
                       (a)                                              (b)                                             (c) 

Figure 21. Mach contours computed with 3rd order QF approach and Roe flux. (a) 
3,072 DOFs. (b) 12,288 DOFs. (c) 49,152 DOFs. 

All plots show fourteen even contours of Mach number between 0 and 0.65. The coarse grids 

show some discontinuous contours and a slight asymmetry at the trailing edge. As the grid is 

refined, the contours become continuous and the flow becomes perfectly symmetric with 
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respect to both axes. For the 3rd order case, grid independence is achieved on the medium 

grid, while for the 4th order case, even the coarse grid results are nearly grid independent. It is 

interesting to note that these results appear to be slightly better than those obtained using the 

full isoparametric SV approach on the same grids [54]. 

   
                       (a)                                             (b)                                              (c) 

Figure 22. Mach contours computed with 4th order PQ approach and HLLC flux. (a) 
5,120 DOFs. (b) 20,480 DOFs. (c) 81,920 DOFs. 

 

   
                        (a)                                             (b)                                             (c) 

Figure 23. Mach contours computed with 4th order QF approach and Roe flux. (a) 
5,120 DOFs. (b) 20,480 DOFs. (c) 81,920 DOFs. 

3.4.8.  Subsonic flow over a NACA 0012 airfoil 

As a demonstration using a more realistic geometry, inviscid subsonic flow over a 

NACA 0012 airfoil at Mach = 0.4, and angle of attack of 5 degrees is simulated. In this 
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simulation, the 3rd and 4th order schemes are tested using a very coarse mesh with 48x16x2 

triangles, as shown in Figure 24, to further demonstrate the effectiveness of the Krivodonova 

and Berger approach [31] for curved boundaries. The outer boundary is 20 chords away from 

the center of the airfoil.  

 
Figure 24. Computational grid for flow over a NACA 0012 airfoil (48x16x2 triangles). 

 

Thirty-three even pressure contours between 0.5 and 0.8 computed using both a linear 

and quadratic boundary representation are shown in Figure 25a and Figure 25b, respectively. 

Figure 26a and Figure 26b show thirty-three even contours of Mach number between 0 and 

0.8. All results are for the QF approach and Roe flux. As can be seen in Figure 25, the 

pressure contours become very smooth and continuous under p-refinement. Some spurious 

entropy production has caused a slight irregularity in the Mach contours at the airfoil surface 

as shown in Figure 26, which can most likely be attributed to the extreme coarseness of the 

grid.  
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                                    (a)                                                                  (b)  

Figure 25. Pressure contours for QF approach and Roe flux: (a) 3rd order; (b) 4th 
order. 

 

    
                                       (a)                                                                    (b)  

Figure 26. Mach contours for QF approach and Roe flux: (a) 3rd order; (b) 4th order. 
 

3.4.9.  Subsonic flow over a sphere 

In this case, we consider an inviscid Mach 0.3 flow over a sphere. We employ a 

sequence of 3 fully unstructured grids as shown in Figure 27.  



www.manaraa.com

60 

 

 

                 
             (a) Coarse grid: 4,856 tetrahedra         (b) Medium grid: 25,027 tetrahedra 

 

 
(c) Fine grid: 53,520 tetrahedra 

Figure 27.  Fully unstructured grids for subsonic inviscid flow over a sphere. 
 

The curved boundary is again represented using the simplified approach of 

Krivodonova and Berger [31].  Figure 28 shows contours of Mach number for 2nd-order and 

3rd-order simulations. It is apparent from the coarse grid results that there is a significant 

artificial wake region behind the sphere, which can be partially attributed to the coarseness of 

the grid on the sphere surface. This phenomenon is far more profound in the 2nd-order results, 

as shown in Figure 28a. As the grid is refined, however, the artificial wake completely 

disappears for the 3rd-order case, while it is still very much present for the 2nd-order case. 

This demonstrates a need for high-order accurate simulations when solving problems 
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involving boundaries of high curvature. Although this artificial wake problem is not as 

significant when using low-order methods, such as the k-exact finite volume method [4,14], 

it is still a problem that does not completely vanish under moderate grid refinement [54,5].                  

     
                (a) Coarse grid: 2nd order                    (b) Coarse grid: 3rd order 
 

     
                (c) Medium grid: 2nd order        (d) Medium grid: 3rd order 
 

     
                   (e) Fine grid: 2nd order                       (f) Fine grid: 3rd order 

Figure 28.  Contours of Mach number for subsonic inviscid flow over a sphere. 



www.manaraa.com

62 

 

 

3.5  Conclusions 

An efficient quadrature-free implementation of the spectral volume method has been 

successfully carried out for scalar and Euler equations in both 2D and 3D. Two different 

approaches to compute the flux integrals more efficiently, the partial quadrature (PQ) and 

quadrature free (QF) approaches, have been developed and evaluated for both 3rd and 4th-

order SV schemes. For a 3rd order SV scheme in 2D, the PQ and QF approaches require 22% 

and 72% fewer flux calculations than the traditional approach, respectively, and for a 4th 

order SV scheme in 2D, the PQ and QF approaches require 28% and 72% fewer flux 

calculations than the traditional approach, respectively. The savings is obviously significant 

in 2D, but in 3D the hundreds or thousands of flux calculations per SV required in the 

traditional approach are reduced to only dozens. For all approaches, it has been found that the 

nearly optimum order of accuracy can be obtained in both the L1 and L∞ norms with respect 

to density errors. A total variation diminishing (TVD) limiter has been implemented in both 

the PQ and QF framework, and demonstrated for a 2D unsteady supersonic problem with 

strong shocks. The simplified curved boundary treatment of Krivodonova and Berger, which 

significantly reduces complexity of the numerical implementation, has been implemented for 

the QF framework and successfully employed for both 2D and 3D simulations. The 3rd and 

4th order schemes using the QF approach and Roe flux have been implemented for the case of 

subsonic flow around a NACA 0012 airfoil to further demonstrate the effectiveness of the 

simplified high-order boundary treatment. The linear boundary representation was also used 

with 3rd and 4th-order SV schemes for the case of subsonic flow over a cylinder, but we were 

only able to obtain convergent numerical solutions using the high-order boundary treatment 
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for this case. To validate the Krivodonova and Berger approach for 3D simulations, the 

problem of subsonic inviscid flow over a sphere was successfully simulated. It was shown 

that for this case, the 2nd-order simulations were plagued by an artificial wake region behind 

the sphere, which was much weaker and ultimately disappeared under grid refinement for the 

3rd-order simulation.  
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CHAPTER 4.  LOCAL ADAPTIVE HP-REFINENT FOR SV METHOD 

The high-order quadrature-free spectral volume (SV) method is now extended to 

handle local adaptive hp-refinement (grid and order refinement). This methodology is also 

described in Harris et al. [20,21]. An edge-based adaptation methodology utilizing a binary 

tree search algorithm is employed for high efficiency. An adaptation criteria is selected 

which focuses computational effort near discontinuities, and effectively reduces the physical 

area of the domain necessitating data limiting for stability. This makes the method very well 

suited for capturing and preserving discontinuities with high resolution. Since the accuracy of 

the SV method is heavily dependent on both the grid and the degree of polynomial 

interpolation, both h- and p- refinement are presented in a general framework where it is 

possible to perform either or both on any grid cell at any time. Several well-known inviscid 

flow test cases, subjected to various levels of adaptation, are utilized to demonstrate the 

effectiveness of the method. 

4.1  Overview of local adaptive hp-refinement 

Adaptive hp-refinement is used to locally refine or coarsen both the grid and solution 

polynomial as the flow develops. It is often desirable to refine the grid near discontinuities, 

and to refine the polynomial near fine smooth features to avoid the high computational cost 

of global refinement. This is the focus of the current work.  
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4.2  Framework for local adaptive hp-refinement 

Local adaptive grid refinement is used to focus computational effort near 

discontinuities and fine smooth features to reduce the overall computational effort in the 

entire domain. H-refinement involves modification of cell sizes while p-refinement involves 

modification of polynomial orders. We wish to utilize either or both on-the-fly as the flow 

develops. Both h- and p-refinements are carried out using only local operations to maximize 

the efficiency and accuracy of the procedure.  

4.2.1  h-refinement 

In this study, since we are only dealing with triangular SVs, the h-refinement can be 

performed without introducing the so-called hanging nodes. Therefore, it is basically a matter 

of grid regeneration, with no required modification of the solver itself. An efficient 

hierarchical edge-based adaptation algorithm is employed, which allows the grid to be 

adapted any number of levels from the base (coarsest) grid at any time. Let εi be an error 

indicator for edge i, and let εmax be some norm of εi taking into account the error for all edges 

in the domain. If for any edge i, εi>αεmax, then edge i is split into two edges, otherwise edge i 

is maintained. Here α>0 is a user specified constant. This procedure begins with edges in the 

base grid (root edges), and continues until the maximum number of adaptation levels is 

reached. The error indicator εi is always computed using the solution from the previously 

adapted (finest) grid. When the above procedure completes, new SVs are added to the grid as 

a result of the split edges. There are essentially four different situations that can occur when 

the grid is adapted, as shown in Figure 29. 
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                   (a)                               (b)                               (c)                               (d)  

Figure 29. Four situations that can occur when a SV is refined; (a) No edges are split so 
the SV is unchanged; (b) Two new SVs are generated due to one split edge; (c) Three 
new SVs are generated due to two split edges; (d) Four new SVs are generated due to 

three split edges. 

For each SV in the grid, the difference in adaptation level for that SV’s edges is 

allowed to be no greater than one. This is done to ensure that all grids are comparable in 

quality to the base grid. When the creation of new SVs is complete, new cell-averages are 

then computed using 

∑
=

=
SN

k
kikjji QMQ

1
,,, ,                                                                                                   (4.1) 

where kjM , are the node-based shape functions for node k averaged over CV j, and Qi,k are 

the conserved variables evaluated at node k  of SV i. If node k exists within a SV in the 

previously adapted grid, then Qi,k are obtained from (2.6) using CV-averaged solutions jiQ ,  

from that SV. Otherwise, if node k exists at the junction between two or more SVs in the 

previously adapted grid, then Qi,k  are obtained from an average of (2.6) among all SVs which 

have the physical location of node k in common. The above interpolation gives rise to an 

inherent loss of precision associated with coarsening of the solution, which is an unavoidable 

consequence of the h-refinement procedure. Three different methods for computing the error 

indicator εi are given below. The first, and simplest error indicator is computed using 
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u
iii Aψε Δ= ,                                                                                                           (4.2) 

where Δψi is the difference of ψ (a variable of interest) between the two endpoints of edge i, 

Ai is the area of edge i, and u>0 is a user specified parameter. An alternative gradient-based 

error indicator is computed using 

( ) u
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r
⋅∇Δ= ψε ,                                                                                                  (4.3) 

where ( )il
r

⋅∇Δ ψ  is the difference of the gradient of ψ between the two endpoints of edge i 

projected in the direction tangent to edge i. The final, and most expensive error indicator is 

computed using 
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This is a cell-based error indicator, whereas (4.2-4.3) are edge-based error indicators. 

Thus, (4.4) is computed for each cell, and if a given cell is marked for refinement, the edges 

bounding that cell are marked for refinement. In addition, since information about 2nd 

derivatives is needed, (4.4) is only valid for 3rd and higher order simulations. A comparison 

of results from the error indicators given by (4.2-4.4) is given in Section 4.3.4. For all cases 

considered here, u=1/2 and εmax is taken to be the L2 norm of ε over all edges, given by 

∑
=

==
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i
iNe

L
1

2
2max

1 εεε ,                                                                                       (4.5) 

where Ne is the total number of edges in the grid, or cells if (4.4) is used. 
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4.2.2  p-refinement 

P-refinement, or order refinement, allows for a distribution of SVs where the degree 

of the polynomial reconstruction may vary from one SV to another. Unlike h-refinement, p-

refinement does require significant modification of the solver itself. Among other things, the 

terms N and Ns in (2.6) and (3.1) are no longer constant, but depend on the level of p-

refinement of the current cell. In addition, computation of the face-averaged terms in (3.3) 

and (3.4) is not as straightforward as before. For example, consider the case where a linear 

SV is adjacent to a quadratic SV, as shown in Figure 30.  

Here, the face-averaged shape functions for CV faces on SV boundaries must be 

computed in parts. For the corner CVs in the quadratic partition (right), the face-averaged 

shape functions are computed as usual, but the face-averaged shape function for the side CV  

must be computed in two parts to coincide with the intersection of that CV face with the face 

of the adjacent CV in the linear SV. With the face-averaged shape functions computed in this 

manner, the face-averaged terms in (3.3) and (3.4) can be readily computed.  

 
Figure 30. Two adjacent SVs with p-refinement levels differing by one. The left SV 

contains a linear partition, and the right SV contains a quadratic partition. 
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Let the error indicator εi  for edge i be the same as is defined in (4.2), and εmax is again 

taken to be the L2 norm of ε over all edges. If for any edge i, εi>βεmax, then the degree of 

polynomial reconstruction, for the cells adjacent to edge i, is increased by 1. Similarly if 

εi<γεmax, then the degree of polynomial reconstruction for the cells adjacent to edge i  is 

either maintained or decreased by 1, if a lower order is available. Here γ,β>0 are user 

specified constants. 

4.2.3  hp-refinement 

For simplicity, simultaneous h- and p-refinements are carried out in a decoupled 

manner. H-refinement is first performed to generate a new grid, and p-refinement is then 

performed to increase or decrease the degree of the polynomial reconstruction for each SV in 

the new grid. As new SVs are created as a consequence of h-refinement, the polynomial 

degree is set to minimum (1 in this case), and may not be increased as a result of p-

refinement. This is a safeguard to ensure that the lowest possible degree polynomial is used 

near very high gradient regions. Such a measure should minimize oscillations due to extreme 

flow phenomena such as shock waves. This methodology for hp-refinement should be able to 

tackle a wide range of problems, resolving both shock waves and fine smooth features 

simultaneously. This is in contrast to other recent approaches by Biswas et al. [7], Flaherty et 

al. [16], and Remacle et al. [34], where both h- and p-refinements are carried out in the same 

regions. While this approach may work well for some situations, it could lead to large 

oscillations for problems involving strong shock waves. This is due to the fact that there is no 

mechanism in place to prevent the use of a high-order polynomial near a shock wave, other 

than a limiting procedure.  
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4.3  Results 

In this section, the SV method with local adaptive hp-refinement is evaluated for the 

2D Euler equations. Several well known inviscid flow test cases are utilized to demonstrate 

the effectiveness of local hp-refinement. In all cases involving shock waves, the TVD limiter 

presented in Section 3.2 is employed to maintain a stable numerical scheme. In all cases 

involving curved-wall boundaries, the approach of Krivodonova and Berger [31] outlined in 

Section 3.3.3 is utilized to maintain low computational cost. All of the following cases 

employ the Rusanov [36] flux, and for time integration we use the 3rd order Strong Stability-

Preserving [18] (SSP) Runge-Kutta scheme, as outlined in (2.11). 

4.3.1  Subsonic flow over NACA 0012 airfoil 

As a demonstration of the p-refinement technique, subsonic flow at Mach=0.4, and 

angle of attack of 5o around a NACA 0012 airfoil is considered. The grid used for the NACA 

0012 case is again semi-structured, as shown in Figure 24. The outer boundary is 20 chord 

lengths away from the center of the airfoil. For this case, the SVs near the farfield are orders-

of-magnitude larger than the SVs near the airfoil surface. Thus, to prohibit adaptation near 

the farfield, it is necessary to remove the area weighting in (4.2) for this case. Also, ψ in (4.2) 

is taken to be the Mach number.  

A converged solution from a 2nd order simulation is subjected to 1 level of p-

refinement and run until convergence. This case will be subsequently denoted as the 2-3 case. 

Thus, the resulting solution will contain some 2nd order SVs and some 3rd order SVs. Mach 
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contours for this simulation, as well as uniform 2nd and 3rd order simulations for comparison, 

are shown in Figure 31.  

(a)  (b)  
 

(c)  (d)  
 

Figure 31. Contours of Mach number for subsonic flow over a NACA 0012 airfoil; (a) 
2nd order (4,608 DOFs); (b) 3rd order (9,216 DOFs); (c) 1 level of p-adaptation starting 
from the converged 2nd order solution shown in (a) (6,519 DOFs); (d) The 1 level case 

shown with the 3rd-order case to illustrate differences. 

 
Figure 31d shows Mach contours for the 2-3 case and for a uniform 3rd order case for 

comparison. It is evident that Mach contours for the 2-3 case agree reasonably well with the 

3rd order contours, and the large errors present near the airfoil in the 2nd order case are 

eliminated in the 2-3 case. The convergence history for this case is shown in Figure 32a.  
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                                      (a)                                                                       (b) 

Figure 32. Results for subsonic flow over NACA 0012 airfoil (a) Convergence history 
(The red circles are for a uniform 3rd order case, while the blue line shows the 

convergence of the 2nd order solution, the p-adaptation step, and the convergence of 
the resulting “2-3” case) (b) Schematic showing the status of p-refinement after refining 
from a converged 2nd order solution. Black regions represent 3rd order SVs, while gray 

regions represent 2nd order SVs. 

It is apparent that the 2-3 case costs slightly more than the 2nd order case in terms of required 

time steps, but it costs much less than the 3rd order case. This is encouraging, as the 2-3 case 

agrees with the 3rd order case extremely well at the airfoil surface (which is where a lift/drag 

calculation would take place), for significantly less computational cost than that required for 

a full 3rd order simulation. Figure 32b clarifies which SVs are increased to 3rd order for the 2-

3 case. It is clear that the majority of SVs in the domain are still 2nd order, and 3rd order SVs 

are only used in regions of largest change in Mach number. 
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4.3.2  Subsonic flow over NASA GA(W)-1 airfoil 

The study in Section 4.3.1 is now repeated for the NASA GA(W)-1 airfoil shown in Figure 

33. Figure 34 shows Mach contours for this case, and Figure 35 shows the convergence 

history and refinement region. This case uses a finer grid, so the results are not quite as 

discernible as with the NACA 0012 case, but none-the-less, a smoother and more accurate 

solution is attained for a slightly higher cost than a 2nd order simulation.                 

 

 
 

Figure 33. Irregular grid for inviscid subsonic flow over NASA GA(W)-1 airfoil (2,722 
triangles). 
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                                        (a)                                                                     (b) 
 

   
 

                                       (c)                                                                    (d) 

Figure 34. Contours of Mach number for subsonic flow over a NASA GA(W)-1 airfoil; 
(a) 2nd order (8,166 DOFs); (b) 3rd order (16,332 DOFs); (c) 1 level of p-adaptation 

starting from the converged 2nd order solution shown in (a) (11,958 DOFs); (d) The 1 
level case shown with the 3rd order case to illustrate differences. 
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                                      (a)                                                                       (b) 

Figure 35. Results for subsonic flow over NASA GA(W)-1 airfoil (a) Convergence 
history (The red circles are for a uniform 3rd order case, while the blue line shows the 
convergence of the 2nd order solution, the p-adaptation step, and the convergence of 

the resulting “2-3” case) (b) Schematic showing the status of p-refinement after refining 
from a converged 2nd order solution. Black regions represent 3rd order SVs, while gray 

regions represent 2nd order SVs. 

 

4.3.3  Transonic flow over NACA 0012 airfoil 

As a demonstration of the h-refinement technique, transonic flow at Mach=0.9, and 

angle of attack of 1o over a NACA 0012 airfoil is considered. The base grid used for this 

simulation is the same as that used in Section 4.3.1.  Here the error indicator (4.2) is 

computed based on density and total energy, and again the area weighting is removed to 

avoid unnecessary refinement in the farfield. This case involves shock waves on both the 

upper and lower surface of the airfoil, so the aforementioned TVD limiter is utilized to 

maintain stability. A converged 2nd order solution is again taken as the initial condition, and 

grid is then re-adapted 3 times and then frozen for the remainder of the simulation.  
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(a)    (b)  

(c)    (d)  

Figure 36. Grids for 2nd order solution of transonic flow over NACA 0012 airfoil with 
adaptive h-refinement; (a) 1 level (3,349 triangles); (b) 2 levels (9,337 triangles); (c) 3 
levels (30,498 triangles); (d) 4 levels (92,551 triangles); A converged 2nd order solution 
on the base grid is used as the initial condition for all cases. The grid is re-adapted 3 
times (once every 100 time steps for the first 300 time steps), and then frozen for the 

remainder of the simulation. 
Figure 36 and Figure 37 show the computational grids and Mach contours, 

respectively, for 1, 2, 3 and 4 levels of adaptive h-refinement.  It is evident that without 

refinement, the shock waves are smeared over several grid cells and the solution is of low 

quality. As the adaptation level is increased, the grid density in the vicinity of both shock 

waves is increased markedly. This produces a much higher quality solution with more 

precisely captured and finely resolved shock waves.  
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(a)    (b)  

 (c)    (d)  

Figure 37. Mach contours for 2nd order solution of transonic flow over NACA 0012 
airfoil with adaptive h-refinement; (a) 1 level (10,047 DOFs); (b) 2 levels (28,011 DOFs); 
(c) 3 levels (91,494 DOFs); (d) 4 levels (277,653 DOFs); A converged 2nd order solution 

on the base grid is used as the initial condition for all cases. 

4.3.4  Mach 3 wind tunnel with a step 

The Mach 3 wind tunnel with a step problem outlined in Section 3.4.6 is now 

repeated using local adaptive h-refinement. The base grid for this simulation is shown in 

Figure 16. Both 2nd and 3rd order simulations are carried out, using various levels of h-

refinement. Figure 38 shows a comparison of results using the error indicators (4.2-4.4) for a 

3rd order simulation with 1 level of refinement. It is apparent that the results are all very 

similar, while (4.3) and (4.4) are more expensive to compute than (4.2). In addition, as the 

number of adaptation levels is further increased, (4.3) and (4.4) become extremely sensitive, 

and as a result, further adaptation becomes increasingly non-isotropic. For this reason, and 
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because it is significantly less expensive to compute while producing desirable results, we 

use the error indicator (4.2) which is computed based on density, and the area weighting 

exponent u=1/2. Figure 39 and Figure 40 show grids and density contours obtained for a 2nd 

order simulation with 0-3 levels of h-refinement.  

     

(a)  
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 (b)  

      

 (c)  
 

Figure 38. Grid and density contours for 3rd order SV scheme under 1 level of adaptive 
h-refinement at time=4.0; (a) Using error indicator given by (4.2) (89,928 DOFs); (b) 
Using error indicator given by (4.3) (84,228 DOFs); (c) Using error indicator given by 

(4.4) (95,046 DOFs); Refined from base grid every 100 time steps. 
   

All plots show 30 even contours of density between 0.09 and 4.53. It is clear that as the 

adaptation level is increased, the grid becomes exceedingly dense in the vicinity of the shock 

wave, near the corner of the step, and downstream of the triple point.  Also as the adaptation 

level is increased, the shock is captured more accurately with less smearing, and the spurious 

Mach stem downstream of the step is completely removed. 
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 (a)  

(b)  

(c)  
 

Figure 39. Grids for 2nd order SV scheme under adaptive h-refinement at time=4.0; (a) 
1 level (14,765 triangles); (b) 2 levels (22,104 triangles); (c) 3 levels (35,846 triangles); 

Refined from base grid every 100 time steps. 
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(a)  

(b)  

(c)  

(d)  

Figure 40. Density contours for 2nd order SV scheme under adaptive h-refinement at 
time=4.0; (a) Base grid (26,238 DOFs); (b) 1 level (44,295 DOFs); (c) 2 levels (66,312 

DOFs); (d) 3 levels (107,538 DOFs); Refined from base grid every 100 time steps. 
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Figure 41 and Figure 42 show results for a 3rd order simulation. In both 2nd and 3rd order 

cases, the spurious Mach stem is completely eliminated for 2 or more levels of h-refinement, 

and when compared to global refinement, even 1 level of h-refinement produces a much 

better solution with far fewer degrees of freedom than that on a grid that has been globally 

refined 1 level.   

 

 

 

   (a)  

  (b)  
 

Figure 41. Grids for 3rd order SV scheme under adaptive h-refinement at time=4.0; (a) 
1 level (14,988 triangles); (b) 2 levels (22,677 triangles); Refined from base grid every 

100 time steps. 
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(a)  

(b)  

(c)  

Figure 42. Density contours for 3rd order SV scheme under adaptive h-refinement at 
time=4.0; (a) Base grid (52,476 DOFs); (b) 1 level (89,928 DOFs);(c) 2 levels (136,062 

DOFs); Refined from base grid every 100 time steps. 
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4.3.5  Rayleigh-Taylor instability problem 

The Rayleigh-Taylor instability (RTI) problem involves a cold fluid overlying a 

warm fluid. Two inviscid fluids are initially taken to be in hydrostatic equilibrium in an 

isolated chamber, as shown in Figure 43a.  

 
                                            (a)                         (b)                       (c) 

Figure 43. Problem domain and grids for RTI problem; (a) domain; (b) symmetric grid 
(10x38x2 triangles); (c) asymmetric grid (10x38x2 triangles). 

 

The chamber is 1 unit high, and 0.25 units wide. The upper half of the chamber contains a 

fluid of density two, while the lower half of the chamber contains a fluid of unit density. The 

initial pressure field is chosen to ensure hydrostatic equilibrium, and an initial perturbation of 

the velocity field triggers the instability. 

The flow is governed by the Euler equations with the addition of source terms in the 

y-momentum and energy equations which correspond to unit gravity in the downward 
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direction. The initial data is summarized in Table 11, where M0=0.1, τ=6, γ=1.4, 

2/0 γε My = , and 16/τεε yx −= .  

Table 11.  Initial conditions for RTI problem. The geometric center of the chamber is 
taken to be the origin of the coordinate system. 

 
               Parameter                          upper part                                           lower part          

            
           ρ                                        2                                                        1 
           u             εxsin(8πx)cos[π(y+1/2)]sinτ-1[π(y+1/2)]          same as upper part 
           v                       -εycos(8πx)sinτ[π(y+1/2)]                      same as upper part 
           p                                      2-2y                                                   2-y 

 

A perturbation is selected which gives rise to a single mode instability, and inviscid wall 

boundary conditions are used for the chamber walls. While there are no shock waves in this 

problem, there is a contact discontinuity between the two fluids.   

 Figure 44 shows 1st, 2nd, 3rd, and 4th order results for this case on both symmetric and 

asymmetric grids with no adaptation. In all plots, 30 even contours of density between 0.84 

and 2.4 are presented. In addition, Roe flux is used for all RTI cases and the TVD limiter is 

taken to be based on the conserved variables. These practices dramatically increase the 

quality of the results for the RTI problem. From Figure 44, it is evident that as the 

polynomial order is increased on a uniform grid, the solution contours are over-dissipated by 

the limiter. Thus, if a local min/max-based limiter is used for this problem, adaptive local h-

refinement is essential if high-order accuracy is sought. For comparison, Figure 45 shows 2nd 

and 3rd order results using uniformly refined grids. Results and grids for this case obtained 

using local adaptive h-refinement are shown in Figure 46 through Figure 48. In all cases 

considered here, the grid is refined from the base grid every 10 time steps. 
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(a)           

(b)           

Figure 44. 1st, 2nd, 3rd, and 4th order density contours (left-to-right, 760, 2,280, 4,560, 
and 7,600 DOFs) for RTI problem at time=1.8 with no adaptation; (a) symmetric grid; 

(b) asymmetric grid. 
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 (a)      (b)       

(c)       (d)        

Figure 45. Grid, 2nd and 3rd order density contours (left-to-right) for RTI problem at 
time=1.9 with no adaptation; (a) symmetric grid (20x76x2 triangles); (b) symmetric 

grid (40x152x2 triangles); (c) asymmetric grid (20x76x2 triangles); (d) asymmetric grid 
(40x152x2 triangles). 
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 (a)        

(b)        

Figure 46. Results for RTI problem at time=1.9 on symmetric grids; (a) grids obtained 
using 1-4 levels of adaptation (left-to-right, 1,810, 4,960, 14,079, and 38,281 triangles); 

(b) 2nd order density contours obtained using 1-4 levels of adaptation (left-to-right, 
5,430, 14,880, 42,237, and 114,843 DOFs). 
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Both symmetric and asymmetric base grids are employed for this simulation. It is 

immediately apparent that the behavior of the RTI problem is heavily dependent on the grid 

used. Namely, if the initial grid is symmetric, the solution tends to stay symmetric (for the 

most part), otherwise the solution is completely asymmetric. In all cases, the typical 

mushroom-cap behavior is observed, with increasingly complicated flow structure 

downstream as the number of adaptation levels is increased. Comparing Figure 46 through 

Figure 48, it is clear that local adaptive h-refinement is far more effective than global 

refinement at resolving the flow features for this problem. In fact, a much more highly 

resolved solution is obtained using local h-refinement with far fewer degrees-of-freedom 

than is necessary for a global refinement strategy to produce similar results.  
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(a)        

(b)        

Figure 47. Results for RTI problem at time=1.9 on asymmetric grids; (a) grids obtained 
using 1-4 levels of adaptation (left-to-right, 1,834, 5,226, 14,391, and 36,185 triangles); 

(b) 2nd order density contours obtained using 1-4 levels of adaptation (left-to-right, 
5,502, 15,678, 43,173, and 108,555 DOFs). 
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(a)     (b)     

(c)     (d)     

Figure 48.  3rd order results for RTI problem at time=1.9 obtained using 1-3 levels of 
adaptation; (a) symmetric grids (left-to-right, 1,770, 4,788, and 13,513 triangles); (b) 

asymmetric grids (left-to-right, 1,891, 5,254, and 13,698 triangles); (c) density contours 
for symmetric grids (left-to-right, 10,620, 28,728, and 81,078 DOFs); (d) density 
contours for asymmetric grids (left-to-right, 11,346, 31,524, and 82,188 DOFs). 
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4.3.6  Reflection of Mach 3 shock wave from 2 offset circular cylinders 

This problem involves a right-moving Mach 3 shock wave impacting two offset 

circular cylinders. The domain is 1 unit high and 1 unit wide, with two 0.15 radius cylinders 

located at (0.4, 0.25) and (0.5, 0.75), respectively. The shock wave is initially located at 

x=0.2, and the solution is carried out until time=0.16.  

The base grid for this case, and results for 2nd, 3rd and 4th order simulations with no 

adaptation are shown in Figure 49.  

(a)     (b)  

(c)     (d)  

Figure 49. Results for 2 cylinder Mach reflection case at time=0.16 with no adaptation; 
(a) base grid (3,740 triangles); (b) 2nd order density contours (11,220 DOFs); (c) 3rd 
order density contours (22,440 DOFs); (d) 4th order density contours (37,400 DOFs). 
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It is evident that the 3rd order simulation has more effective resolution of the shock 

waves than the 2nd order simulation, however, the 4th order simulation has resolution 

comparable to the 3rd order simulation. This is likely because limiters based on a local 

maximum principle are often over dissipative, and can effectively reduce a high-order 

simulation to low-order.  

Figure 50 and Figure 51 show 2nd and 3rd order results and grids for this simulation 

subjected to various levels of h-adaptation. In all plots, 30 even contours of density between 

0.3 and 18.0 are presented. It is apparent that as the adaptation level is increased, the 

resolution of the shock waves increases markedly. This is true for the region where the shock 

reflects off of the cylinder, as well as for the region where the shocks intersect. From Figure 

51, it is clear that the 3rd order simulation gives better resolution of the shocks, and more 

accuracy in smooth regions than the 2nd order case.  

 

 

(a)         
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(b)         

(c)         

(d)        

Figure 50. 2nd order grid and density contours for 2 cylinder Mach reflection case at 
time=0.16; (a) 1 level (22,566 DOFs, 7,522 triangles); (b) 2 levels (39,144 DOFs, 13,048 

triangles); (c) 3 levels (71,427 DOFs, 23,809 triangles); (d) 4 levels (134,484 DOFs, 
44,828 triangles); Refined from base grid every 100 time steps. 
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(a)        

(b)        

(c)        

Figure 51. 3rd order grid and density contours for 2 cylinder Mach reflection case at 
time=0.16; (a) 1 level (45,756 DOFs, 7,626 triangles); (b) 2 levels (78,978 DOFs, 13,163 
triangles); (c) 3 levels (143,580 DOFs, 23,930 triangles); Refined from base grid every 

100 time steps. 

 



www.manaraa.com

96 

 

 

4.4  Conclusions 

  The high-order quadrature-free spectral volume method has been successfully 

extended for use with local adaptive hp-refinement. A hierarchical edge-based adaptation 

algorithm was employed for high efficiency. The p-refinement methodology was effectively 

utilized for the case of subsonic flow over a NACA 0012 airfoil and a NASA GA(W)-1 

airfoil, and the h-refinement technique was also employed with success for transonic flow 

over a NACA 0012 airfoil. In addition, the h-refinement technique was also demonstrated for 

supersonic flow in a wind tunnel with a forward-facing step, reflection of a moving shock 

wave off of 2 offset circular cylinders, and the Rayleigh-Taylor instability problem. It was 

demonstrated that local adaptive h-refinement is far more effective than global refinement at 

resolving important flow features, and a much more highly resolved solution can often be 

obtained using local adaptive h-refinement with far fewer degrees-of-freedom than is 

necessary for a global refinement strategy to produce similar results.   
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CHAPTER 5.  STABILITY ANALYSIS FOR SV METHOD 

 

An analysis of the accuracy and stability properties of the 2D spectral volume 

method, with emphasis on extremely high-order accurate simulations, is presented. In 

general, the partitioning of an SV into CVs is not uniquely defined, and thus it is of great 

importance to select a partition which yields favorable stability properties, and results in an 

interpolation polynomial of high quality. In recent work, researchers have largely focused on 

polynomial quality, abandoning stability considerations, when designing SV partitions. There 

has been some work advocating the use of stability analyses in the design of SV partitions, 

however a guiding principle which seeks to simultaneously provide favorable stability 

properties and the highest quality polynomial possible, is very much missing. Here we seek 

to address the issue of stability, as well as polynomial quality, in the design of SV partitions. 

A new approach is presented, which efficiently locates stable partitions by means of 

constrained minimization. This is motivated by the fact that, at present, an exhaustive search 

approach to SV partition design would be prohibitively costly and thus not feasible. Once 

stable partitions are located, a high quality interpolation polynomial is then assured by 

subsequently minimizing the dissipation and dispersion errors of the stable partitions. 

Preliminary results are presented for new 4th, and 5th order partitions. 
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5.1  Review of recent work 

The partitioning of an SV into CVs has been one of the greatest challenges in the 

implementation of the SV method since its inception [50]. This partitioning defines the 

reconstruction stencil, and thus plays a vital role in determining the accuracy and stability 

properties of the scheme. Early on, several researchers focused on using the Lebesgue 

constant as a means to design accurate SV partitions [51,32,8,9]. While this criteria may be 

used to find partitions with lower error bounds, it does not guarantee that a particular scheme 

will be more or less accurate, and it offers no information about the stability of the scheme. A 

positive step towards addressing the issue of stability was given by Van den Abeele et al. 

[43,44,45]. In this work, some previously used SV partitions were found to be weakly 

unstable, and several new stable partitions were proposed. It was also shown that the new 

partitions had lower dissipation and dispersion errors than some previously used partitions 

despite having larger Lebesgue constants. This showed that although the Lebesgue constant 

should be small to ensure a lower upper bound on the error, it need not be minimal for a 

scheme to possess superior accuracy.  

5.2  Framework for stability analysis 

 The wave propagation properties associated with a particular SV partition and 

Riemann flux carry information about both the accuracy and stability of the numerical 

scheme. Recent work by Van den Abeele et al. [43-45] has utilized the so-called Fourier 

footprint to facilitate the design of stable SV partitions with favorable wave propagation 

properties. A similar analysis is employed here.  
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  Consider the 2D linear advection equation 

 ( ) 0=⋅∇+
∂
∂ Qa

t
Q r ,                                     (5.1) 

with periodic boundary conditions, where ar =a(cosψ, sinψ) is the wave propagation velocity, 

and ψ is the wave propagation direction. The initial solution is taken to be a harmonic plane 

wave 

 ( ) ( )θθ sincos0,, yxIkeyxQ += ,        (5.2) 

with wave number k, I is the square root of -1, and θ is the orientation angle. The SV method 

is then applied to (5.1) on a grid comprised entirely of equilateral triangles. The simplest unit 

which produces the entire grid when periodically repeated, commonly referred to as the 

generating pattern (GP), is shown in Figure 52.  

 
Figure 52. Generating pattern for the grid (taken from [44]). 

The GP is completely defined by the vectors 1B
r

 and 2B
r

. On the boundary between two SVs, 

the following Riemann flux is employed 

    ( ) ( ) ( ) RLRL QnanaQnanaQQF rrrrrrrr
⋅−⋅+⋅+⋅= ϕϕ

2
1

2
1,ˆ ,        (5.3) 
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where QL is the solution due to the SV to the left of the face, QR is the solution due to the SV 

to the right of the face, and φ is an upwinding parameter, where φ = 0 gives rise to a central 

flux, and φ = 1 results in a simple upwind flux. After applying the SV method to (5.1), we 

obtain 

 ∑
=

+
+

−
−

⎢
⎢
⎣

⎡
+++

ΔN

n
njinmnjinmnjinm

nji
nm QMQMQM

dt
Qd

U
a

BV2

1
;,1

1
,;,1

1
,;,

0
,

;,
,

'

 ] 0;1,
1
,;1,

1
, =++ +

+
−

−
njinmnjinm QNQN ,      (5.4) 

where ΔB is the magnitude of 1B
r

, a is the magnitude of ar , V’ is the volume of an SV 

nondimensionalized by ΔB2, the index m varies from 1 to 2N, and the indices i and j denote a 

particular GP. The variables njiQ ;,  for n = 1 to N are the CV-averages corresponding to the 

first SV in the GP (SV1), while the variables for n = N + 1 to 2N are the CV-averages 

corresponding to the second SV in the GP (SV2), and the matrices 

nmU , , 0
,nmM , 1

,
−

nmM , 1
,

+
nmM , 1

,
−

nmN , and 1
,

+
nmN  are functions of the wave propagation direction and 

are given in the Appendix. Substitution of the harmonic plane wave 

( ) ( ) ( )( )[ ]tjBiBjBiBkI
mmji

yyxxeQtQ ωθθ −+++= sincos
;,

2121~
  into (5.4) yields  

 ( ) ( )[∑
=

++++−− +++Ω−
N

n

BBIK
nm

BBIK
nmnmnm

yxyx eMeMMUVI
2

1

sincos1
,
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,
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,,

'
1

'
1

'
1

'
1'~ θθθθ

 ( ) ( ) ] 0~sincos1
,

sincos1
,

'
2

'
2

'
2

'
2 =++ ++++−−

n
BBIK

nm
BBIK

nm QeNeN yxyx θθθθ ,          (5.5) 

where K is the nondimensional wave number, and Ω~  is the nondimensional numerical 

frequency. The numerical dispersion relation can then be written as 
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 ( ) ( )θθθθ sincos1sincos1 '
1

'
1

'
1

'
1'~ yxyx BBIKBBIKo eeVI ++++−− +++Ω− MMMU  

 ( ) ( ) 0sincos1sincos1 '
2

'
2

'
2

'
2 =++ ++++−− θθθθ yxyx BBIKBBIK ee NN ,    (16) 

from which Ω~  can be readily computed. The quantity Ω− ~I  is the so-called Fourier footprint 

ImRe ℜ+ℜ=ℜ I of the discretization, Imℜ  being a measure of the dispersive properties of 

the scheme, and Reℜ  being a measure of the dissipative properties. To ensure stability, 

Reℜ should be nonpositive for all K, θ, and ψ.  

5.3  Partition generation and optimization 

Families of SV partitions which are considered here, as with those considered in previous 

work [8,44], contain quadrilateral, pentagonal, and hexagonal CVs. It turns out that for an 

interpolation polynomial of degree m, there must be 3 quadrilateral corner CVs, 3(m-1) 

pentagonal side CVs, and (m2-3m+2)/2 hexagonal interior CVs. Initially a uniform partition 

of this family is generated, as shown in Figure 53 for polynomials of degree 3, 4, and 5. 

         
                        (a)                                             (b)                                            (c) 

Figure 53. Uniform partitions for polynomials of degree 3 (a), 4 (b), and 5 (c). 
The parameters that uniquely define the SV partition, which will subsequently be referred to 

as the control vector, can then be determined. The control vector essentially contains the 

locations of the nodes which physically define the shapes of the CVs within the SV. If any 
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linear manipulation of the SV, while keeping the SV center fixed, causes a given node to 

coincide with any other node, then any movement of that given node is tied to the movement 

of the “coincident” nodes. These “coincident” nodes will hereafter be referred to as partner 

nodes, as shown in Figure 54 for partitions of degree 3 and 4. Denote the components of the 

control vector as (α4, β4, γ4, δ4) for a 4th order partition. These components refer to positions 

of the square, circle, diamond, and delta symbols from Figure 54, respectively. 

   
 

Figure 54. Identification of partner nodes (denoted by like shapes) for partitions of 
degree 3 (left) and 4 (right). The degree 3 partition is completely defined by 4 

parameters, whereas the degree 4 partition requires 7 parameters. 

Thus if a given node is found to have partner nodes, for simplicity, the control vector need 

only contain the position of the given node. Furthermore, the three corner nodes, as well as 

the SV center node (if it exists) and the SV edge center nodes (if they exist) are omitted from 

the control vector, since they are immovable. Finally, if a node exists on an SV edge or on an 

SV line of symmetry, that node is constrained to move along a line and is thus represented by 

a single coordinate in the control vector, while all other nodes are unconstrained and are 

represented by two coordinates in the control vector. 
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  The constrained minimization program called CONMIN [48] is employed to optimize 

the SV partitions. CONMIN is a gradient-based optimizer which utilizes the method of 

Feasible Directions [61] to find the Feasible Direction, and then move in that direction to 

update the control vector. The objective or cost function for CONMIN is taken to be the 

maximum real part of the Fourier footprint of the scheme Re
maxℜ . Since CONMIN is used for 

minimization, it will attempt to drive Re
maxℜ to as low a value as possible, and if it reaches a 

nonpositive value, a stable partition has been discovered. Then, upon discovery of many 

stable partitions, those with the lowest dissipation and dispersion errors are deemed likely to 

be suitable for simulation.   

5.4  Results 

  The constrained minimization approach outlined above has been applied to a 4th-order 

SV partition. In Figure 55, we present a new partition denoted as “SV4H”, and compare with 

a partition previously proposed by Van den Abeele et al. denoted as “SV4P” [44], which is 

known to have favorable stability properties and high accuracy. In Figure 56 we present the 

dispersion and dissipation errors for the both partitions as a function of wave number, leaving 

the wave angle fixed at π/6. It is evident that the new partition proposed here has better 

agreement with the exact solution for a wider range of wave numbers than partition “SV4P”. 

In addition, plots of the corresponding Fourier footprints in Figure 57 show that the “SV4H” 

partition also has a smaller Fourier footprint than the “SV4P” partition, and thus will allow 

for larger time steps to be taken. To validate this analysis numerically, both partitions are 

used to solve the problem of linear advection of a sine wave on a 10x10x2 grid with periodic 
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boundary conditions. The solution is carried out until time=400. Figure 58 shows the time 

history of the residual for this simulation, and it is clear that the "SV4H" partition has 

considerably less damping than the "SV4P" partition. It is thus apparent that the "SV4H" 

partition is capable of preserving a wave for a longer period of time than the "SV4P" 

partition on the same grid.   

 

Table 12. Control vector and Lebesgue constant for "SV4P" and "SV4H" partitions.  

Partition α4 β4 γ4 δ4 ||ΓΠ|| 

SV4P 0.07800000 0.07800000 0.03900000 0.26325000 4.2446 

SV4H 0.12061033 0.09097092 0.05000000 0.23419571 4.0529 
 
 
 

 
                                   (a)                                                                       (b) 

Figure 55. Partitions for 4th-order SV schemes; (a) “SV4P” proposed in Van den Abeele 
et al. [44]; (b) “SV4H" proposed here.  
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                                      (a)                                                                      (b) 
                                     

Figure 56. Dissipation and dispersion errors as a function of wave number for various 
4th-order partitions. The wave angle considered here is π/6. (a) dispersion error vs. wave 

number; (b) dissipation error vs. wave number.  

     
                                       (a)                                                                    (b) 

Figure 57. Fourier footprint for 4th-order partitions; (a) “SV4P”; (b) “SV4H”. 

 

The new approach has also been applied to a 5th order partition, and preliminary 

studies have produced some stable 5th order partitions. An example of a stable 5th order 
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partition and its corresponding Fourier footprint are shown in Figure 59. Although more 

work still needs to be done to minimize the dissipation and dispersion errors of the partition, 

it is now very promising that this procedure can be used to design stable SV partitions of 

arbitrary order.  

 
Figure 58. Residual vs. time history for 4th order simulation of the linear advection of a 

sine wave in a 10x10x2 domain with periodic boundary conditions.  

 
Figure 59. Stable 5th order partition (left) and corresponding Fourier footprint (right). 
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5.5  Conclusions 

A new method for obtaining stable SV partitions with low dissipation and dispersion 

errors via constrained minimization has been presented. The methodology for automatically 

generating a uniform partition and extracting the parameters that define the design space is 

outlined. Preliminary results are given for both 4th and 5th order partitions which demonstrate 

the potential of this method for producing stable and highly accurate partitions of arbitrary 

order. 
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CHAPTER 6.  SUMMARY AND FUTURE WORK 

An efficient new quadrature-free implementation of the spectral volume method has 

been successfully carried out for scalar and Euler equations in both 2D and 3D. Two different 

approaches to compute the flux integrals more efficiently, the partial quadrature (PQ) and 

quadrature free (QF) approaches, have been developed and evaluated for both 3rd- and 4th-

order SV schemes in 2D, and for 2nd- and 3rd-order schemes in 3D. The savings is significant 

in 2D, but in 3D the hundreds or thousands of flux calculations per SV required in the 

traditional approach are reduced to only dozens. For all approaches, it has been found that the 

nearly optimum order of accuracy can be obtained in both the L1 and L∞ norms with respect 

to density errors, and results for several well known inviscid flow test cases have further 

demonstrated the capabilities of the new method.  

The new quadrature-free implementation has also been successfully extended for use 

with local adaptive hp-refinement. A hierarchical edge-based adaptation algorithm was 

employed for high efficiency. The p-refinement methodology was effectively utilized for the 

case of subsonic flows over airfoils, and the h-refinement technique was also employed with 

success for several transonic and supersonic flow cases, both in the presence of strong shock 

waves and curved boundaries. It was demonstrated that local adaptive h-refinement is far 

more effective than global refinement at resolving important flow features, and a much more 

highly resolved solution can often be obtained using local adaptive h-refinement with far 

fewer degrees-of-freedom than is necessary for a global refinement strategy to produce 

similar results.   
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A new method for obtaining stable SV partitions with low dissipation and dispersion 

error via constrained minimization has been presented. The methodology for automatically 

generating a uniform partition and extracting the parameters that define the design space is 

outlined. Preliminary results are given which indicate this to be an effective method for use 

in the design of stable and highly accurate partitions of arbitrary order. 

 Further investigation is needed for the design of very high-order stable SV partitions, 

as the design space becomes extremely large with increasingly high-order partitions. 

Moreover, the problem becomes even more expensive in 3D where the number of cell faces, 

even for slightly high-order accurate schemes, is overwhelming and is heavily CPU- and 

memory-intensive. For these reasons, and to allow for the simulation of practical problems of 

interest in 3D, there is a great need for a parallel implementation of the new QF approach. In 

addition, the algorithm for local adaptive h-refinement could be extended to 3D to promote a 

more efficient use of computational resources. These are some areas which could benefit 

from further study. 
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APPENDIX.  MATRIX DEFINITIONS FOR STABILITY ANALYSIS 

Here the expressions for the matrices Q,  M0, M-1, M+1, N-1, N+1 from Section 5.2 as 

outlined in Van den Abeele [44] are given. The indices m and n are CV indices that take on 

the values m, n = 1,…, Np, and the indices i and j run over the two SVs in the generating 

pattern, taking on the values 1 and 2. V’
m  is the dimensionless volume of the CV with index 

m (same for all SVs). ,int'
,miS  is the part of the boundary surrounding CV m in SV i, that does 

not belong to the boundary of SV i. lef
miS ,'

, , rig
miS ,'

, , low
miS ,'

, , and upp
miS ,'

,  are the parts of the 

boundary surrounding CV m in SV i, that belong to the left, right, lower, and upper boundary 

of the GP, respectively. con
miS ,'

,  is the part of the boundary surrounding CV m within SV i, that 

belongs to the boundary between SV 1 and SV 2. The normals to these boundaries always 

point out of the CV. Also, let us define local coordinates ξ
r

= (ξ, η) such that: 

η
ξ

By
Bx

Δ=
Δ=

.                                                                                                                 (A.1) 

Then the matrices are given as: 
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